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Abstract—Data races occur when two threads fail to use
proper synchronization when accessing shared data. In kernel file
systems, which are highly concurrent by design, data races are
common mistakes and often wreak havoc on the users, causing
inconsistent states or data losses. Prior fuzzing practices on file
systems have been effective in uncovering hundreds of bugs, but
they mostly focus on the sequential aspect of file system execution
and do not comprehensively explore the concurrency dimension
and hence, forgo the opportunity to catch data races.

In this paper, we bring coverage-guided fuzzing to the concur-
rency dimension with three new constructs: 1) a new coverage
tracking metric, alias coverage, specially designed to capture
the exploration progress in the concurrency dimension; 2) an
evolution algorithm for generating, mutating, and merging multi-
threaded syscall sequences as inputs for concurrency fuzzing;
and 3) a comprehensive lockset and happens-before modeling for
kernel synchronization primitives for precise data race detection.
These components are integrated into KRACE, an end-to-end
fuzzing framework that has discovered 23 data races in ext4,
btrfs, and the VFS layer so far, and 9 are confirmed to be harmful.

I. INTRODUCTION

In the current multi-core era, concurrency has been a major
thrust for performance improvements, especially for system
software. As is evident in kernel and file system evolutions [1–
4], a whole zoo of programming paradigms is introduced
to exploit multi-core computation, including but not limited
to asynchronous work queues, read-copy-update (RCU), and
optimistic locking such as sequence locks. However, alongside
performance improvements, concurrency bugs also find their
ways to the code base and have become particularly detrimental
to the reliability and security of file systems due to their
devastating effects such as deadlocks, kernel panics, data
inconsistencies, and privilege escalations [5–12].

In the broad spectrum of concurrency bugs, data races are
an important class in which two threads erroneously access
a shared memory location without proper synchronization
or ordering. Obstructed by the non-determinism in thread
interleavings, data races are notoriously difficult to detect and
diagnose, as they only show up in rare interleavings that require
precise timing to trigger. Even worse, unlike memory errors
that tend to crash the system immediately upon triggering, data
races do not usually raise visible signals in the short term and
are often identified retrospectively when analyzing assertion
failures or warnings in production logs [13].

As the state of the practice, file system developers often rely
on stress testing to find data races proactively [14, 15]. By
saturating a file system with intensive workloads, the chance
of triggering uncommon thread interleavings, and thus data
races, can be increased. However, while useful, stress testing

has significant shortcomings: handwritten test suites are far
from sufficient to cover the enormous state space in file system
execution, not to mention keeping up with the rapid increase
in file system size and complexity.

More recently, coverage-guided fuzzing has proven to be a
useful complement to handwritten test suites, with thousands of
vulnerabilities found in userspace programs [16–20]. Without
a doubt, kernel file systems can be fuzzed, and generic OS
fuzzers [21–23] have demonstrated their viability with over 200
bugs found. In addition, file system-specific fuzzers, Janus [5]
and Hydra [6], have extended the scope of file system fuzzing
from memory errors into a broad set of semantic bugs, while
the data race-specific fuzzer, Razzer [24], has shed lights on
data race detection by combining fuzzing and static analysis.
At the core of these fuzzers is the coverage measurement
scheme, which summarizes unique program behaviors triggered
by a given input in bitmaps. The fuzzer compares per-input
coverage against the accumulated coverage bitmaps to measure
the “novelty” of the input and determines whether it should
serve as the seed for future fuzzing rounds.

However, almost all existing coverage-guided fuzzers focus
on tracking the sequential aspect of program execution only
and fail to treat concurrency as a first-class citizen. To illustrate,
branch coverage (i.e., control flow transition between basic
blocks) has been the predominant coverage measurement metric.
But such a metric captures little information about thread
interleavings: different interleavings are likely to result in the
same branch coverage (Figure 2), while only a small fraction
may trigger a data race (Figure 3).

With the sequential view of program execution, existing
kernel fuzzers have been very effective in mutating and
synthesizing single-threaded syscall sequences based on seed
traces [25, 26] to maximize branch coverage. But no heuristics
have been proposed in synthesizing multi-threaded sequences
to maximize thread interleaving coverage. Last but not least,
given that data races often lead to silent failures, treating only
kernel panics or assertions as bug signals is not sufficient: a
data race checker that handles kernel complexity is needed.

To bring coverage-guided fuzzing to the concurrency dimen-
sion, in this paper, we present KRACE, an end-to-end fuzzing
framework that fills the gap with new components in three
fundamental aspects in kernel file system fuzzing:
Coverage tracking [§III] KRACE adopts two coverage tracking
mechanisms. Branch coverage is tracked as usual to capture
code exploration in the sequential dimension, analogous to
the line coverage metric used in unit testing. In addition, to
approximate exploration progress in the concurrency domain,
KRACE proposes a novel coverage metric: alias instruction



pair coverage, short for alias coverage. Conceptually, if we
could collect all pairs of memory access instructions X↔Y such
that X in one thread may-interleave against Y in another thread,
alias coverage tracks how many such interleaving points have
been covered in execution. Consequently, if the growth of alias
coverage stalls, it signals the fuzzer to stop probing for new
interleavings in the current multi-threaded seed input.

Input generation [§IV] KRACE generates and mutates in-
dividual syscalls according to a specification [21, 27]. The
novel part of KRACE lies in evolving multi-threaded seeds and
merging them in an interleaved manner to preserve already-
found coverage as well as to maximize the chances of inducing
new interleavings. Another job of the input generator is to
produce thread schedulings, (to explore the hidden input space).
Although enforcing fine-grained control over thread scheduling
is possible [7], the scheduling algorithm does not scale to
whole-kernel concurrency, as the latter consists of not only user
threads, but also background threads internally forked by file
systems, work queues, the block layer, loop devices, RCUs, etc.,
and the total number of contexts often exceeds 60 at runtime.
As a result, KRACE adopts a lightweight delay injection scheme
and relies on the alias coverage metric as feedback to determine
whether more delay schedules are needed.

Bug manifestation [§V] KRACE incorporates an in-house
developed detector to reason about data races given an
execution trace. In essence, KRACE hooks every memory access
and for each pair of accesses to the same memory address,
KRACE checks whether 1) they belong to two threads and at
least one is a memory write; 2) these two accesses are strictly
ordered (i.e., happens-before relation); and 3) at least one shared
lock exists that guards such accesses (i.e., lockset analysis). The
challenges for KRACE lie in modeling the diverse set of kernel
synchronization mechanisms comprehensively, especially those
uncommon primitives such as optimistic locking, RCU, and
ad-hoc schemes implemented in each file system.

KRACE adopts the software rejuvenation strategy to avoid
the aging OS problem, i.e., every execution is a fresh run from
a clean-slate kernel and empty file system image. Doing so
trades performance for trackability and debuggability but is
worthwhile for data race detection. As shown in §VII-B, the
exploration gradually catches up and bypasses conventional
speed-oriented fuzzers (e.g., Syzkaller) upon saturation. KRACE
also decouples data race checking from state exploration. Unlike
prior works where the bug checker runs inline in each execution,
in KRACE, the checker only kicks in when new coverage (either
branch or alias) is reported. This prevents the expensive data
race checking from slowing down the state exploration while
still preserving the opportunity to test every new execution state
found through fuzzing. The checking progress will eventually
catch up when the coverage growth is toward saturation.

We evaluated KRACE by fuzzing two popular and heavily
tested kernel file systems (ext4 and btrfs) in recent kernel
versions and we found 23 data races, nine of which are
confirmed as potentially harmful races, and 11 are benign
races (for performance or allowed by the POSIX specification).

Fig. 1: A data race found by KRACE. This figure shows the complete
call stack, thread ordering information, and locking information when
the data race happens and the inconsistency it may cause ( 1 - 4 ).

Summary: This paper makes the following contributions:
• Concept: The alias coverage metric and interleaved multi-

threaded syscall sequence merging are novel concepts that
make coverage-guided fuzzing more effective in highly
concurrent programs, possibly as a first step toward fuzzing
for a wide range of concurrency bugs.

• Implementation: KRACE’s data race checker encodes a
comprehensive model of kernel synchronization mechanisms
in the form of over 100 kernel patches (for code instrumen-
tation), which are regularly updated as the kernel upgrades.

• Impact: KRACE has found 23 data races and will be
continuously running to find new cases. We will open-
source KRACE as well as the collection of syscall primitives
for multi-threaded execution as quality seeds for future
concurrent file system fuzzing research.

II. BACKGROUND AND RELATED WORK

The past three decades have witnessed several efforts to find
data races using various techniques. In this section, we show a
data race example, discuss the types of approaches that prior
works have taken, and introduce coverage-guided fuzzing as a
generic bug finding technique.
Example. Intuitively, a data race is caused by two threads
trying to perform unordered and unprotected memory oper-
ations to the same address. Figure 1 shows two data races
found by KRACE that happen to make a complete scenario.
The read of full is in race with both writes, as the read is
not protected by the corresponding delayed_rsv->lock as is
done on the writers’ side. According to btrfs developers, this
results in ineffective management of the reserve space internally
used by btrfs, in particular, delays in releasing the reserved
space or space releasing followed by reservation instead of
migration from one reserve to another. Reflected in the call
stack, if the execution takes the order of 1 → 2 → 3 → 4 , then
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block_rsv_release_bytes is inadvertently releasing bytes that
will be used by the fsync. Such a case might eventually cause
integer overflows in the reserve space but would probably
require thousands of concurrent file operations to trigger.

Data race is a special type of race condition, and hunting
data races in complex software involves two facets: 1) how to
confirm an execution is racy and 2) how to produce meaningful
executions by exploring code and thread-scheduling.

Dynamic data race detection algorithms. Most of the initial
works [28] found race conditions by relying on the happens-
before analysis [29]. However, one of the prime issues with
this approach is that it leads to false negatives. To improve the
detection accuracy, Eraser [30] proposed the lockset analysis,
in which users annotate the common lock/unlock methods and
find atomicity violations. Later, several works [31, 32] proposed
optimizations to either mitigate the overhead or minimize false
positives. To further improve the effectiveness of dynamic data
race detection, several works [33, 34] combined the idea of
happens-before relation with lockset analysis.

Unfortunately, most of these works target userspace programs
using simple synchronization primitives (e.g., those provided by
pthread or Java runtime), which only represent a small subset
of synchronization mechanisms available in the Linux kernel.
KRACE follows the same trend in combining happens-before
and lockset analysis, but unlike prior works, KRACE provides a
comprehensive framework that includes not only simple locking
methods, such as pessimistic locks (e.g., mutex, readers-writer
lock, spinlock, etc.), but also optimistic locking protocols,
such as sequence locks, and other forms of synchronization
mechanisms that imply more than just mutual exclusion, e.g.,
RCU [35] and other publisher-subscriber models.

Both lockset and happens-before analysis require code
annotations and suffer from incompleteness, i.e., a missing lock
model leads to false positives. Several works overcome this
issue with timing-based detection, i.e., a thread is delayed for
a certain duration at some memory accesses while the system
observes whether there are conflicting accesses to the same
memory during the delay [13, 36, 37]. Moreover, most of these
works resort to sampling [13, 34, 37–39], as an optimization
over completeness, to further minimize the runtime overhead
caused by tracking memory accesses or code paths.

However, complete timing-based detection relies on precise
control of thread execution speed and results in an enormous
search space (both in where to delay and how long to delay),
which again is not scalable in the kernel scope. As a result,
in terms of race detection, KRACE resorts to a trial-and-
error approach and fixes false positives introduced by ad-hoc
mechanisms along with the development. Fortunately, due to
the high coding standard and strict code review practice, ad-hoc
synchronization is not common in kernel file systems.

Code/thread-schedule exploration. The effectiveness of a
data race checker depends not only on the detection algorithm
but also on how well the checker can explore execution states
and cover as many code paths and thread interleavings as
possible. For code path exploration, prior detectors mostly rely

on manually written test suites [7, 36, 37] that do not capture
complicated cases. As shown in Figure 1, triggering the data
race would require a user thread to mkdir on the same block the
background uuid_rescan thread is working on, which (almost)
in no way can be specified in manually written test cases. An
alternative is to enumerate code paths statically [40–44], but
this is not scalable. Recent OS fuzzers adopt specification-
based syscall synthesization [5, 6, 21, 27]. However, these
fuzzers mostly focus on generating sequential programs instead
of multi-threaded programs and are not intended to explore
interleavings in syscall execution. KRACE adopts a similar
synthesization approach, but instead of focusing on single-
threaded sequences, KRACE evolves multi-threaded programs.

In the case of thread-schedule exploration, prior approaches
fall into three categories, in decreasing order of scalability but
increasing order of completeness: 1) stressing the random
scheduler with multiple trials [14]; 2) injecting delays at
runtime [13, 36, 37]; and 3) enumerating every possible thread
interleaving [7, 24]. KRACE uses delay injection, a trade-off
among scalability, practicality, and completeness.
Data race detection in kernels. KRACE shares its design
ideology with four prominent works [7, 24, 45, 46]. DataCol-
lider [45] is the first work that tackles this problem by using
randomized sampling of a small number of memory accesses
in conjunction with code breakpoint and data breakpoint
facilities for efficient sampling. DataCollider is simple enough
to detect several bugs in the Windows kernel modules. A similar
strategy is used by Syzkaller [21] with its Kernel Concurrent
Sanitizer [46] (KCSan) module. KCSan is a dynamic data
race detector that uses compiler instrumentation, i.e., software
watchpoints instead of hardware watchpoints, to detect bugs
on non-atomic accesses that violate the Linux kernel memory
model [47] using happens-before analysis.

SKI [7] focuses on comprehensive enumeration of thread
schedules with the PCT algorithm [48] and hardware break-
points. However, SKI permutes user threads only to find data
races in the syscall handlers and thus forgoes the opportunities
to find data races in kernel background threads. Furthermore,
even with user threads only, the number of permutations can
be huge to test thoroughly. In addition, the test suites used by
SKI may be too small to explore an OS for bugs.

Razzer [24] combines static analysis with fuzzing for
data race detection. In particular, Razzer first runs a points-
to analysis across the whole kernel code base to identity
potentially alias instruction pairs, i.e., memory accesses that
may point to the same memory location. After that, per each
alias pair identified, Razzer tries to generate syscalls that reach
the racy instructions at runtime. It does so with fuzzy syscall
generation [21, 27], and sequential syscall traces are generated
first. Once the alias relation is confirmed in the sequential
execution, the trace is then parallelized into multi-threaded
traces for actual data race detection.

Razzer presents an elegant pipeline for data race fuzzing, but
it can be further improved: 1) running points-to analysis [49]
on kernel file systems produces millions of may-alias pairs,
which is almost impossible to enumerate one by one; 2) even
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for one alias pair, how to generate syscalls that may reach the
racy instructions is less clear. KRACE aims to improve both
aspects with the novel notion of alias coverage. Instead of pre-
calculating the search space with points-to analysis, KRACE
relies on coverage-guided fuzzing to expand the search in the
concurrency dimension gradually. Analogically, this is similar
to not enumerating every path in the control-flow graph but
instead using an edge-coverage bitmap to capture the search
progress. Doing so also eliminates the concern on how to
generate syscalls that lead execution to specific locations.

Fuzzing in general. Fuzzing has proven to be a practical
approach to find bugs in today’s software stack, both in the
userspace [16, 20, 50–54] and in the kernel space [5, 6, 21,
22, 27, 55]. Unfortunately, existing works cannot be trivially
adopted for data race fuzzing. One reason is that the main
focus of fuzzing has been on finding memory corruptions or
triggering assertions. Although Hydra [6] extends the scope
beyond memory errors into semantic bugs in file systems, it
does not provide any insight into finding data races.

Moreover, since modern coverage-guided fuzzing originates
and prospers from testing single-threaded programs such as
binutils, encoder/decoders, and the CGC and LAVA-M fuzzing
benchmarks, recent fuzzing efforts have focused on optimizing
fuzzers’ performance on single-threaded executions too, such as
approximating sequential execution with neural networks [51].
Not surprisingly, when the fuzzing practice is carried down to
the OS level [21, 22, 27, 55–59], the same sequential view of
program execution is inherited.

Although generating structured inputs has been a challenge
for kernel fuzzing, many improvements have been proposed.
For example, MoonShine [25] captures dependencies between
syscalls and DIFUZE [26] generates interface-aware inputs.
However, lacking a coverage metric and a seed evolution
algorithm to handle state exploration in the concurrency
dimension, existing OS fuzzers miss the opportunities to find
the broad spectrum of concurrency bugs, including data races.
The motivation behind KRACE is to fill this gap and to bring
coverage-guided fuzzing to the concurrency dimension.

Static and symbolic analysis on kernels. Although KRACE
is a dynamic analysis system, we are also aware of works that
aim to find concurrency bugs with static analysis [40–44]. Most
of these approaches rely on static lockset analysis and, hence,
suffer from the high false-positive rate caused by missing the
happens-before relation in the execution as well as the inherent
limitations of the points-to analysis. For instance, RacerX [41]
suffers from 50% false positives on the Linux kernel.

Beyond concurrency bugs, static analysis has proven effective
in finding many security issues in kenrel drivers. For example,
SymDrive [60] uses symbolic execution to emulate devices
and verify the properties of kernel drivers; DrChecker [61] is
capable of finding eight types of security issues by relaxing the
completely sound analysis on unbounded loops with mostly
sound versions. However, a major challenge in applying these
works to data race detection in file systems is their lack of
statefulness, i.e., although extremely effective in finding bugs
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Fig. 2: A data race found by KRACE when symlink, readlink, and
truncate on the same inode run in parallel (simplified for illustration).
The race is on the indexed accesses to a global array G and occurs only
when B==C. A is lock-protected. This is one example showing branch
coverage is not sufficient in approximating execution states of highly
concurrent programs. It is not difficult to cover all branches in this
case with existing fuzzers, but to trigger the data race, merely covering
branches e1-e3 is not enough. The thread interleavings between four
instructions i1-i4 are equally important. The valid interleavings that
may trigger the data race are shown in Figure 3.
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Fig. 3: Possible thread interleavings among the four instructions
shown in Figure 2. Out of the 6 interleavings, only 3 interleavings
( 1 / 4 , 2 / 3 , 5 / 6 ) are effective depending on A’s value when B and
C read it. Each effective interleaving results in different alias coverage.
Only 5 / 6 may trigger the data race.

within one syscall execution, they miss bugs that occur because
of the interaction between multiple syscalls, which happen to
be the majority of cases in file system operations.

III. A COVERAGE METRIC FOR CONCURRENT PROGRAMS

In this section, we show why branch coverage, the golden
metric for fuzzing, might be insufficient to represent the
exploration in the concurrency dimension, while at the same
time, why alias coverage, our new proposal, fits this purpose.

A. Branch coverage for the sequential dimension

Branch coverage originates from the program control-flow
graph (CFG), which is inherently a sequential view of program
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execution. As shown in Figure 2, in CFGs, execution flows
through basic blocks and user-controllable inputs, e.g., size in
SYS_truncate, determine the set of edges that join the basic
blocks. For a branch coverage-guided fuzzer: given an input
(e.g., a list of syscalls), it tracks the set of edges that are hit at
runtime and leverages this feedback to decide whether this input
is “useful” and should be kept for more mutations. Intuitively,
the fuzzer expects to probe more branches by mutating the
seed, and not surprisingly, once the branch coverage growth
stalls, the fuzzer will shift focus to other seeds.

In the case shown in Figure 2, exhausting all branches
sequentially will only yield the status of B==1, B==2, and
C==0. After that, these execution paths (represented by the
seeds covering them) will be de-prioritized and considered
non-interesting by the fuzzer. However, this is not the end of
the story. To trigger the data race when B==C==2, the execution
of four critical instructions (i1-i4) has to be interleaved in
a special way, as shown in Figure 3. Unfortunately, all six
interleavings yield the same branch coverage, and the fuzzer
is likely to give up the seed upon hitting a few of them.

Further note that this is an extremely simplified example
that involves only six possible interleavings among two threads.
In actual executions, the concurrency dimension can be huge,
as the instructions executed by each thread are usually in the
thousands or even millions, while there will be tens of threads
running at the same time. As a result, when fuzzing highly
concurrent programs, we need to pay attention to not only
code paths explored, but also meaningful thread interleavings
explored that yield to the same branch coverage. In other words,
if the fuzzer believes that there could be unexplored thread
interleavings in a seed, the seed should not be de-prioritized.

B. Alias coverage for the concurrency dimension

Intuition. At first thought, recording the exploration of thread
interleavings can be futile. A realistic kernel file system at
its peak time may use over 60 internal threads, where each
thread may execute over 100,000 instructions. The total possible
number of thread interleavings is 60100000, an enormous search
space that no bitmap can ever approximate.

However, it is worth noting that not all interleaved executions
are useful. In fact, only interleavings of memory-accessing
instructions to the same memory address matters. As shown
in Figure 2, interleaving instructions apart from i1-i4 has no
effect on the final results of B, C, as well as the manifestation
of the data race. This is true in the actual code, where hundreds
and thousands of instructions sit between i1, i3 and i2, i4.

In other words, based on the crucial observation that data
races, and even in the broader term, concurrency bugs, typically
involve unexpected interactions among a few instructions
executed by a small number of threads [7, 62, 63], if KRACE is
able to track how many interactions among these few memory-
accessing instructions have been explored, it is sufficient to
represent thread interleaving coverage and to find data races.
This is precisely what gets tracked by alias coverage.
A formal definition. First, suppose all memory-accessing
instructions in a program are uniquely labeled: i1, i2, ...., iN.

At runtime, each memory address M keeps track of its last
define operation, i.e., the last instruction that writes to it as
well as the context (thread) that issues the write, represented
by A ← <ix, tx>. Now, in the case in which a new access to
M is observed, carried by instruction iy from context ty: if iy
is a write instruction, update A ← <iy, ty> to reflect the fact
that A is redefined. Otherwise:

• if tx == ty, i.e., same context memory access, do nothing,
• or else, record directed pair ix→iy in the alias coverage.

Figure 3 is a working example of this alias coverage tracking
rule. In cases 1 and 4 , there is no inter-context define-then-
use of memory address A, and hence, the alias coverage map is
empty. On the other hand, in cases 2 and 3 , the calculation
of B in T1 relies on A defined in T2, hence the pair i3→i2.
The same rule applies to cases 5 and 6 .
Feedback mechanism. Essentially, alias coverage provides a
signal to the fuzzer on whether it should expect more useful
thread interleavings out of the current test case, i.e., a multi-
threaded syscall sequence. If the alias coverage keeps growing,
the fuzzer should come up with more delay schedules to inject
at the memory-accessing instructions (detailed in §IV-B) in the
hope of probing unseen interleavings. Otherwise, if the coverage
growth stalls, it is a sign that the concurrency dimension of the
current test case is toward saturation, and the most economical
choice is to switch to other seeds for further exploration.
Coverage sensitivity fine-tuning. Finding one-suits-all cover-
age criteria has been a never-ending quest in software engineer-
ing [64]. Even the branch coverage has several variations, such
as N-gram branch coverage, context-sensitive coverage [52],
etc., which are well-documented and compared in a recent
survey [65]. However, despite the fact that branch coverage
is always subsumed by program whole-path coverage, branch
coverage is still preferred over path coverage, as the latter is
overly sensitive to input changes and thus requires a much
larger bitmap to hold and compare. On the other hand, branch
coverage strikes a balance among effectiveness, execution speed,
and bitmap accounting overhead.

Similarly, alias coverage strives to find such a balance point
in the concurrency dimension. In our experiments with kernel
file system fuzzing, KRACE observed 63,590 unique pairs of
alias instructions (directed access). Based on the data, for
an empirical estimation, a bitmap of size 128KB should be
sufficient to avoid heavy collisions, which is close to AFL’s
branch coverage bitmap size (64KB). In addition, if more
sensitivity is needed for alias coverage, KRACE can be easily
adopted from 1st-order alias pair (alias coverage) to 2nd-order
alias pair, Nth-order alias pair, and up-to total interleaving
coverage. We leave this for future exploration.

IV. INPUT GENERATION FOR CONCURRENCY FUZZING

In this section, we present how to synthesize and merge
multi-threaded syscall sequences for file system fuzzing, as
well as how to exploit a hidden input domain—thread delay
schedule—to accelerate thread interleaving probing.
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Fig. 4: Illustration of four basic syscall sequence evolution strategies
supported in KRACE: mutation, addition, deletion, and shuffling. For
KRACE, each seed contains multi-threaded syscall sequences and each
thread trace is highlighted in different shades of grayscale.

A. Multi-threaded syscall sequences

Specification-based synthesization. The goal of syscall
generation and mutation is to generate diverse and complex file
operations that are otherwise difficult for human developers
to contemplate. Given that syscalls are highly structured data,
it is almost fruitless to mutate their arguments blindly. As
a result, we use a specification to guide the generation and
mutation of syscall arguments. A feature worth highlighting in
KRACE’s specification is the encoding of inter-dependencies
among syscalls, especially path components and file descriptors
(fd), which are most relevant to file system fuzzing. To illustrate,
as shown in Figure 5, the open syscall in seed 1 reuses the
same path component in the mkdir syscall, while the write
syscall in seed 2 relies on the return value of creat.
Seed format. The seed input for KRACE is a multi-threaded
syscall sequence. Internally, it is represented by a single list
of syscalls (a.k.a, the main list) and a configurable number
of sub-lists (3 in KRACE) in which each sub-list contains a
disjoint sequence of syscalls in the main list. Each sub-list
represents what will be executed by each thread at runtime. To
illustrate, as shown in Figure 5, seed 1 has three threads, where
each thread will be executing mkdir-close, mknod-open-close,
and dup2-symlink, respectively, marked in different grayscale.
Evolution strategies. KRACE uses four strategies to evolve a
seed for both branch and alias coverage, as shown in Figure 4.

• Mutation: a randomly picked argument in one syscall will
be modified according to specification. If a path compo-
nent is mutated, it is cascaded to all its dependencies.

• Addition: a new syscall can be added to any part of the
trace in any thread, but must be after its origins.

• Deletion: a random syscall is kicked out of the main list
and the sub-list. In case a file descriptor is deleted, its
dependencies are forced to re-select another valid file.

• Shuffling: syscalls in the main list are redistributed to
sub-lists, but their orders in the main list are preserved.

Merging multi-threaded seeds. The power of fuzzing lies
not only in evolving a single seed but also in joining two seeds
to produce more interesting test cases. To enable seed merging

Fig. 5: Semantic-preserving combination of two seeds. For KRACE,
each seed contains multi-threaded syscall sequences and each thread
trace is highlighted in different shades of grayscale.

in KRACE, a naive solution might be simply to concatenate
two traces. However, this is not the most economical use of
seeds, as it forgoes the opportunities to find new coverage by
further interleaving these high-quality executions.

KRACE adopts a more advanced merging scheme: upon
merging, the main lists of the two seeds are interweavingly
joined, i.e., the relative orders of syscalls are still preserved in
the resulting main list as well as in the sub-lists. As a result,
the syscall inter-dependencies are preserved too. As shown
in Figure 5, all the dependencies on path and fds are properly
preserved after merging (highlighted in corresponding colors).
Primitive collection. Successful syscalls are valuable assets
out of the file system fuzzing practice, not only because they
lead to significantly broader coverage than failed syscalls, but
also because they can be difficult, and sometimes even fortunate,
to generate due to the dependencies among them. This is true
especially for long traces of closely related syscalls. As a result,
upon discovering a new seed, KRACE first prunes it and retains
only successful syscalls and further splits these syscalls into
non-disjoint primitives where each primitive is self-contained,
i.e., for any syscall, all its path and fd dependencies (also
syscalls) are captured in the same primitive.

Over the course of fuzzing, KRACE has accumulated a
pool of around 10,000 primitives covering 68 file system
related syscalls for which KRACE has a specification. In each
primitive, file operations span across 3 threads, with each thread
containing 1-10 syscalls, and most importantly, all syscalls
succeed. We will open-source this collection in the hope that
these primitives may serve as quality seeds for future concurrent
file system fuzzing.

B. Thread scheduling control (weak form)

Thread scheduling is a hidden input domain for concur-
rency programs. Unfortunately, there is no way to control
kernel scheduling by merely mutating syscall traces. Hooking
the scheduling implementation (or using a hypervisor) and
systematically permuting the schedules might be possible
for small-scale programs [63] or for a few user threads in
the kernel [7, 24]. But these algorithms are far from being
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Fig. 6: The delay injection scheme in KRACE. In this example, white
and black circles represent the memory access points before and after
delay injection. Injecting delays uncovers new interleavings in this
case, as the read and write order to the memory address x is reversed.

scalable enough to cover all kernel threads. For a taste of
the scalability requirement, Figure 14 shows the level of
concurrency introduced by the btrfs module alone, not to
mention other background threads forked by the block layer,
loop device, timers, and RCU.
Runtime delay injection. KRACE resorts to delay injection
to achieve a weak (and indirect) control of kernel scheduling,
based on the observation that only shared memory accesses
matter in thread interleavings. KRACE’s delay injection scheme
is extremely simple, as shown in Figure 6. Before launching
the kernel, KRACE generates a ring buffer of random numbers
and maps it to the kernel address space. At every memory
access point, the instrumented code fetches a random number
from the ring buffer, say T, and delays for T memory accesses
observed by KRACE system-wise (i.e., in other threads).

A ring buffer is used to hold the random numbers, as KRACE
cannot pre-determine how many injection points are needed
for each execution, not to mention that such a number may
be extremely large. Injecting delays at memory access points
is at the finest granularity for delay injection. Although this
works well in file system fuzzing, it might nevertheless be too
fine-grained and introduces too much overhead. The injection
points can be at the granularity of basic blocks or functions or
even customized locations such as locking operations, etc.

V. A DATA RACE CHECKER FOR KERNEL COMPLEXITY

Although the definition of data races is simple, finding them
in a kernel execution trace can be difficult, primarily because of
the variety of synchronization primitives available in the kernel
code base as well as the ad-hoc mechanisms implemented
by each individual file system. In this section, we enumerate
the major categories of kernel synchronization primitives and
describe how they can be modeled in KRACE.

A. Data race detection procedure

Overview. We say a pair of memory operations, <ix, iy>, is
a data race candidate if, at runtime, we observed that

• they access the same memory location,
• they are issued from different contexts tx and ty,
• at least one of them is a write operation.
Such information is trivial to obtain dynamically by simply

hooking every memory access. The difficulty lies in confirming
whether a data race candidate is a true race. For this, we need
two more analysis steps to check that:

• no locks are commonly held by both contexts, tx and ty,
at the time when memory operations ix and iy are issued
from them, respectively. [lockset (§V-B)]

• no ordering between ix and iy can be inferred based on
the execution: i.e., there is no reason ix must happen-
before iy or the other way around, regardless of how tx
and ty are scheduled. [happens-before (§V-C)]

Conceptually, lockset analysis produces no false negatives,
i.e., if there is a data race in the execution trace, it is guaranteed
to be flagged by the lockset analysis. But lockset analysis is
prone to false positives, as it ignores the ordering information.
Happens-before analysis helps in filtering these false positives.
Kernel complexity. Although conceptually simple, lockset
analysis requires a complete model of all locking mechanisms
available in the kernel, and similarly, happens-before analysis
requires all thread ordering primitives to be annotated. Other-
wise, false positives will arise. However, after nearly 30 years
of development, the Linux kernel has accumulated a rich set
of synchronization mechanisms. KRACE takes a best-effort
approach in modeling all major synchronization primitives as
well as ad-hoc ones if we encounter them in our experiment.
Due to space constraints, we present some representative ad-hoc
schemes modeled by KRACE in appendix §C.

Besides the variety of synchronization events, the number
of ordering points in the kernel execution is enormous. To get
a taste of the complexity in real-world executions, Figure 18
shows a snippet of the ordering relation (e.g., task queuing,
waiting for conditions, etc.) across all user and kernel threads.

B. Lockset analysis

Most kernel locking primitives differentiate between reader
and writer roles. The major difference is that a reader-lock can
be acquired by multiple threads at the same time, as long as
its corresponding writer-lock is not held; while a writer-lock
can only be held by at most one thread. KRACE follows this
distinction and tracks the acquisitions and releases of both
reader- and writer-locks for each thread at runtime. Formally,
such information is stored in the form of a lockset: denoted by
LSR

<t,i> for the reader-side lockset for thread t at instruction
i as well as LSW

<t,i> for the writer-side lockset. Both locksets
are cached and attached to a memory cell whenever a memory
access on that thread is observed, as shown in Figure 7.

The lockset analysis is simple as the following: for each data
race candidate <tx, ix> and <ty, iy>, if any of the following
conditions holds, this candidate cannot be a true data race.

LSR
<tx,ix> ∩ LSW

<ty,iy> ̸= ∅ (1)

LSW
<tx,ix> ∩ LSR

<ty,iy> ̸= ∅ (2)

LSW
<tx,ix> ∩ LSW

<ty,iy> ̸= ∅ (3)
On the other hand, if none of the conditions hold for a

data race candidate, then the execution of tx and ty can be
interleaved without restrictions around those memory accesses,
as shown in the reading and writing of addresses 0x34 and
0x46 in Figure 7, hence, leading to data races.
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Fig. 7: Illustration of lockset analysis in KRACE. This example shows
almost all locking mechanisms commonly used in the kernel, including
1) spin lock and mutexes—[un]lock(RW, -),
2) reader/writer lock—[un]lock(R/W, *),
3) RCU lock—specially denoted with symbol ∆, and
4) sequence lock—begin/end/retry(R/W, *).
The left column shows the content in the reader lockset at the time of
memory operation or changes to the lockset caused by other operations
(/ denotes no change). The right column shows the writer counterpart.
The two data races are highlighted in red and blue squares.

Pessimistic locking. Most of the kernel locking primitives
are pessimistic locking, i.e., whoever tries to acquire the lock
will be blocked from further execution until the lock holder
releases it. As a result, their APIs are always in pairs of lock
and unlock to mark the start and end of a critical section.
Examples of such locks include spin lock, reader/writer spin
lock, mutex, reader/writer semaphore, and bit locks.

A slightly trickier primitive is the RCU lock, in
which only reader-side critical sections are marked with
rcu_read_[un]lock and the writer-side critical section is not
marked by any lock/unlock APIs, instead, it is guaranteed
by the RCU grace period waiting. More specifically, when
__rcu_reclaim schedules an RCU callback into execution,
it is guaranteed that there is no RCU reader-side critical
section running. Hence, in KRACE, we hook the RCU callback
dispatcher and mark RCU writer lock and unlock before and
after the callback execution.

Optimistic locking. The Linux kernel is gradually shifting
toward lock-free design and the most prominent evidence in
recent years is the wide adoption of sequence locks [66]. A
sequence lock is, in fact, more similar to a transaction than to
a conventional lock. The reader is allowed to run optimistically
into the critical section, hoping that the data it reads will not
be modified during the transaction (hence the optimism), and
aborts and retries if the data does get modified.

While boosting performance, a challenge brought by the
sequence lock is that there is no clear end of the reader-side
critical section. As shown in Figure 7, after a transaction
begins, the retry can be called multiple times, perhaps one for
mid-of-progress checking and the other one for before-commit
checking; in theory, each retry could be an unlock-equivalent
that marks the end of the critical section. If the lockset analysis
is performed online (i.e., during execution), the lockset states
should fork to capture that the retry may or may not be an

Fig. 8: Illustration of happens-before reasoning in KRACE. This
example shows a very typical execution pattern in kernel file systems
where the user thread schedules two asynchronous works on the
work queue and checks for their results later in the execution. In
particular, one of the asynchronous works is a delayed work that also
goes through the timer thread. Fork-style, join-style, and publisher-
subscriber relations are represented by dashed, dotted, and solid arrows,
respectively. The only data race is highlighted in the red square.

unlock. For KRACE, since it uses offline lockset analysis, it
may simply read the execution trace ahead to know whether
there are more retries and behave correspondingly.

C. Happens-before analysis

Intuitively, happens-before analysis tries to find the causal
relations between specific execution points in the threads. For
example, a kernel thread only gets into running if another
thread forks it; as a result, there is no way to schedule the
spawned thread before the parent thread creates it. This implies
that whatever happens before the thread creation points cannot
be data racing against anything in the spawned thread. In the
example shown in Figure 8, there is no way for i2 to be racing
against i6, as without queuing the work on the work queue
(c2→c8), i6 won’t even be executed in the first place. Similarly,
scheduling a thread that is waiting for a condition to be true
will not make it run bypassing the barrier. Therefore, it is not
possible for i4 to race against i8, as only when the wake_up
call is reached (c12→c5) can i4 be executed.

This intuition shows how a happens-before relation can be
formally checked: by hooking kernel synchronization APIs, e.g.,
when a callback function is queued and when it is executed, we
could find the synchronization points (nodes) between threads
as well as the causality events (represented by edges), as shown
in Figure 8. Since the nodes in one thread are already inherently
connected according to program order, the whole execution
becomes a directed acyclic graph. Consequently, determining
whether two points, <tx, ix> and <ty, iy>, may race is
translated into a graph reachability problem. If a path exists
from <tx, ix> to <ty, iy>, it means that point X happens-
before Y and thus cannot be racing. The same applies if we
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Fig. 9: An overview of KRACE’s architecture and major components.
Components in italic fonts are either new proposals from KRACE or
existing techniques customized to meet KRACE’s purpose.

can establish Y happens-before X. On the other hand, if no
such path can be found, a happens-before relation cannot be
established and the pair should be flagged, as in the case of
i3 and i8. All other accesses are reachable in the graph, and
hence, they cannot be racing even without lock protections.

The happens-before relation commonly found in kernel file
systems can be broadly categorized into three types:
Fork-style relations include RCU callbacks registered with
call_rcu, work queues and kthread-simulated work queues,
direct kthread forking, timers, software interrupts (softirq),
as well as inter-processor interrupts (IPI). Hooking their kernel
APIs is as easy as finding corresponding functions that register
the callback and dispatch the callback.
Join-style relations include the completion API and a wide
variety of wait_* primitives such as wait_event, wait_bit,
and wait_page. Hooking their kernel APIs requires locating
their corresponding wake_up calls besides the wait calls.
Publisher-subscriber model mainly refers to the RCU pointer
assignment and dereference procedure [35]. For example, if
one user thread retrieves a file descriptor (fd) from the fdtable
which is RCU-guarded, the new fd must have been published
first, hence the causality ordering. The object allocate-and-use
pattern also falls into this realm: the publisher thread allocates
memory spaces for an object, initializes its fields, and inserts
the pointer to a global or heap-based data structure (usually a
list or hashtable), while the subscriber thread later dereferences
the pointer and uses the object. As a result, KRACE also tracks
the memory allocation APIs and monitors when the allocated
pointer is first stored into a public memory slot and when it is
used again to establish the ordering automatically.

VI. PUTTING EVERYTHING TOGETHER

A. Architecture

Figure 9 shows the overall architecture of KRACE. The
primary purpose of having the compile-time preparation is to
embed a KRACE runtime into the kernel such that alias coverage
(as well as branch coverage) can be collected dynamically. The

runtime is also responsible for collecting information for data
race checking, leveraging the kernel API hooking. On the
other hand, the fuzzing loop is still conventional, covering seed
selection, mutation, and execution, with the exception that in
KRACE, a test case is considered “interesting” as long as new
progress is found in either of the coverage bitmaps. In addition,
all components are updated to handle the new seed format for
concurrency fuzzing: multi-threaded syscall sequences.
Code instrumentation. Since the focus of KRACE is file
systems, we only instrument memory access instructions in
the target file system module and its related components such
as the virtual file system layer (VFS) or the journaling module,
e.g., jbd2 for ext4. On the other hand, API annotations are
performed on the main kernel code base and have an effect even
when the execution goes out of the functions in our target file
system: the locks acquired and released, as well as the ordering
primitives (e.g., queuing a timer), will be faithfully recorded.
In this way, KRACE does not suffer from false positives in
cases like block layer calls into a callback in the file system
layer but we do not know the prior locking contexts.
Fuzzing loop. Figure 15 shows the fuzzing evolution algorithm
in KRACE. Fuzzing starts with producing a new program
by merging two existing seeds. The seed selection criterion
used in KRACE so far is simply frequency count, i.e., less
used seeds receive priority. We expect more advanced seed
selection algorithms to be developed later. After merging, each
program goes through several extension loops on which the
program structure is altered with syscalls added and deleted.
Each structurally changed program will further go through
several modification loops in which the syscall arguments
and distribution among the threads are mutated. Finally, each
modified program runs repeatedly for several times, each with
a different delay schedule, to probe for alias coverage.

Several implicit parameters can be used to fine-tune the
process, e.g., how many times to loop at each stage (see §B
for details). In general, we give preference to alias coverage
exploration over growing the multi-threaded syscall sequences,
as we prefer to explore the concurrency domain as much as
possible when the number of syscalls executed is small, making
it easier for kernel developers to debug a reported data race.
Offline checking. Data race checking is conducted offline, i.e.,
only when new coverage, either branch or alias, is found. The
reason is that data race checking is slow (several minutes) and
significantly hinders the fast fuzzing experience (which only
requires a few seconds to finish one execution). As a result, we
allow the fuzzers to quickly expand coverage and only dump
execution logs without checking them. A few background
threads check the execution logs for data races whenever they
have free capacity. The checking progress has difficulty keeping
up with seed generation in the beginning but will gradually
catch up, especially when the coverage is toward saturation.

B. Benign vs harmful data races

An unexpected problem we encountered when reporting the
data races found by KRACE is on differentiating benign and
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harmful data races. Despite the common belief that being data-
race free is one of the coding practices in the kernel, benign
data races are not totally uncommon. One major category is
statistics accounting, such as __part_stat_add in the block
layer. These statistics are meant for information and hints only
and do not provide any accuracy guarantees. Another example
is the reading and writing of different bits in the same 2-, 4-,
8-byte variable, especially bit-flags such as inode->i_flag or
flags in file system control structures like fs_info.

Based on our experience, checking whether a data race is
benign or harmful is often time consuming, as it requires careful
analysis of the code and documentation to infer developers’
intentions. In the worst cases, it may require consulting the file
system developers, who may not even agree among themselves.
One possibility to confirm a harmful data race is to keep the
system running until the data race causes any visible effects
such as violating assertions or memory errors. However, this is
not always feasible, as shown in the case in Figure 1. It might
need thousands of file operations running in parallel to trigger
an integer overflow. By then, debugging such an execution
trace will be another problem.

To avoid reporting benign data races to developers, KRACE
uses several simple heuristics to filter the reports. In particular,
a data race is mostly benign if:

• the race involves variables that have stat in their names
or occurs within functions for statistics accounting;

• the race involves reading and writing to different bits of
the same variable;

• the race involves kernel functions that can tolerate being
racy, e.g., list_empty_careful.

Unfortunately, these heuristics typically offer limited help for
the more complicated cases.

C. The aging OS problem

When fuzzing file systems, most generic OS fuzzers do
not reload a fresh copy of the kernel instance or file system
image [21–23] for a new fuzzing session. Instead, they directly
issue the syscall sequence on the old kernel state. The intention
is to remove the overhead of kernel booting, as a VM emulator
might take seconds to load and boot the kernel, as is evident
in our evaluations as well (§VII-B). However, this also means
that any bugs found in this approach might come from the
accumulated effects of hundreds or even thousands of prior
runs, making them extremely difficult to debug and confirm by
kernel developers, as is evident in the case when many bugs
found by Syzkaller cannot be confirmed [67].

The aging OS problem is already difficult for fuzzing in the
sequential domain, and bringing in the concurrency dimension
further complicates the story. Moreover, for KRACE, the aging
OS situation creates more problems, as the lengthy thread
interleaving traces are not only difficult to debug but also
renders analysis impossible. Slicing the execution traces does
not seem feasible either, as cutting the trace at the wrong
points means losing the locking and happens-before context,
ultimately leading to false alarms. As a result, KRACE is forced

to use a clean-slate execution for every fuzzing run, i.e., a fresh
kernel and a clean file system image.

The aging OS problem is also reported by Janus [5], which
uses a library OS—LKL [68]—to enable quick reloading. But
unfortunately, LKL does not support the symmetrical multi-
processing (SMP) architecture, which is the prerequisite for
multi-threading (e.g., without SMP, all spin_locks becomes
no-ops). As a result, LKL is mostly suitable for sequential
fuzzing, not for concurrency fuzzing.

D. Discussion and limitations

Deterministic replay. Being able to replay an execution
deterministically is extremely helpful for debugging and also
opens the door for advanced data race triaging techniques
such as controlled re-interleaving of thread executions. Un-
fortunately, we are sorry to report that even with a totally
linearized trace of basic block enter/exit, memory accesses,
lock acquisition/releases, and kernel synchronization API calls,
KRACE is unable to deterministically replay an execution end-
to-end. Part of the reason is the missing instrumentation in other
kernel components, including the kernel core (including the
task and IO scheduler), memory management, device drivers
(except the block device), and most of the library routines.
We expect that deterministic replay may be possible if we
instrument all kernel components but at the expense of huge
execution footprints (e.g., GB-level logs) as well as significant
performance drops. We are unaware of a system that permits
deterministic replay of over 60 kernel threads, but we are eager
to integrate if possible.
Debuggability. To partially compensate for not being able
to replay a found data race deterministically, KRACE tries to
generate a comprehensive report for each data race, including
1) the conflicting lines in source code, 2) the full call stack for
each thread, and 3) the callback graph. Since each instruction
is labeled with a compile-time random number, KRACE is able
to pinpoint the conflicting lines in the source code when a data
race occurs. Further coupled with the basic block branching
information, KRACE is able to recover the full call trace, up
to the syscall entry point or the thread creation point, for all
involving threads during the race condition. The report may
also involve the callback graph derived from the happens-
before analysis, to further assist the developers with the origin
of the threads. In fact, kernel developers have never asked
for a deterministic replay of the trace and are able to judge
whether the race is harmful or benign based on the information
provided.
Missing bugs. Offlining the data race checker means that
KRACE might miss data race bugs. As discussed in §III-B,
alias coverage is just an approximation of state exploration
progress in the concurrency dimension, and there might be new
program states explored at runtime but that do not show up as
new coverage, i.e., meaningful interleavings missed by alias
coverage. KRACE forgoes the opportunities to check data races
in those cases and is a trade-off made in favor of expanding
the coverage with efficiency.
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Fig. 10: Implementation of the QEMU VM-based fuzzing executor
in KRACE. The VM instance and the host have three communication
channels: 1) private memory mapping, which contains the test case
program to be executed by the VM and the seed quality report
generated by KRACE runtime; 2) globally shared memory mapping,
which contains the coverage bitmaps globally available to the host
and all VM instances; 3) file sharing under the 9p protocol for sharing
of large files, including the file system image and the execution log.

E. Implementation

KRACE’s code base is divided into two parts: 1) compile-
time preparation, including annotations to the kernel source
code (in the form of kernel patches), an LLVM instrumentation
pass, and the KRACE library compiled into the kernel that
provides coverage tracking and logging at runtime; and 2) a
VM-based fuzzing loop that evolves test cases, executes them
in QEMU VMs, and checks for data races. The complexity
of each component is described in Table III and an overview
of the runtime executor is shown in Figure 10. Due to space
constraints, more details can be found in §D.

VII. EVALUATION

In this section, we evaluate KRACE as a whole as well
as per each component. In particular, we show the overall
effectiveness of KRACE by listing previously unknown data
races found (§VII-A); provide a comprehensive view of
KRACE’s performance characteristics, e.g., speed, scalability,
etc., as a file system fuzzer (§VII-B); justify major design
decisions with controlled experiments (§VII-C); and compare
KRACE against recent OS and data race fuzzers (§VII-D).

Experiment setup. We evaluate KRACE on a two-socket, 24-
core machine running Fedora 29 with Intel Xeon E5-2687W
(3.0GHz) and 256GB memory. All performance evaluations
are done on Linux v5.4-rc5, although the main fuzzer runs
intermittently across versions from v5.3. We build the kernel
core with minimal components but enable as many features as
possible for the btrfs and ext4 file system modules. For all
evaluations, the fuzzing starts with an empty file system image
created from the mkfs.* utilities. We run 24 VM instances in
parallel for fuzzing and each VM runs a three-thread seed.

ID FS Racing access Status

1 btrfs heap struct: cur_trans->state pending
2 btrfs heap struct: cur_trans->aborted harmful
3 btrfs heap struct: delayed_rsv->full harmful
4 btrfs heap struct: sb->s_flags benign
5 btrfs global variable: buffers harmful
6 btrfs heap struct: inode->i_mode benign
7 btrfs heap struct: inode->i_atime harmful
8 btrfs heap struct: BTRFS_I(inode)->disk_i_size harmful
9 btrfs heap struct: root->last_log_commit harmful

10 btrfs heap struct: free_space_ctl->free_space benign
11 btrfs heap struct: cache->item.used harmful
12 ext4 heap struct: inode->i_mtime benign
13 ext4 heap struct: inode->i_state benign
14 ext4 heap struct: ext4_dir_entry_2->inode benign
15 ext4 heap array: ei->i_data[block] harmful
16 VFS heap string: name in link_path_walk pending
17 VFS heap struct: inode->i_state benign
18 VFS heap struct: inode->i_wb_list benign
19 VFS heap struct: inode->i_flag benign
20 VFS heap struct: inode->i_opflags benign
21 VFS heap struct: file->f_mode benign*
22 VFS heap struct: file->f_pos pending
23 VFS heap struct: file->f_ra.ra_pages harmful

TABLE I: List of data races found and reported by KRACE so far.
Status of benign* means that it is a benign race according to the
execution paths we submitted, but the kernel developers suspect that
there might be other paths leading to potentially harmful cases.

A. Data races in popular file systems

Across intermittent fuzzing runs on two popular kernel file
systems (btrfs and ext4) during two months, KRACE found
and reported 23 new data races, of which nine have been
confirmed to be harmful, 11 are benign, and the rest of them
are still under investigation, as listed in Table I. Note that
besides bugs in concrete file systems, KRACE also finds data
races in the virtual file system (VFS) layer, which might affect
all file systems in the kernel.
Consequence. Based on our preliminary investigation, only
one bug (#5) is likely to cause immediate effects (null-
pointer dereference) when triggered. Others are likely to cause
performance degradation or specification violations, but we do
not see a simple path toward memory errors. This also means
that relying on bug signals such as KASan reports or kernel
panics might not be sufficient to find data races.

B. Fuzzing characteristics

Coverage growth. The growth patterns for both branch and
alias coverage are plotted in Figure 11 (for btrfs) and Figure 12
(for ext4). There are several interesting observations:

Alias coverage size. Although branch coverage for the two
file systems grow into roughly the same level (25K vs 20K),
compared with ext4, btrfs has a significantly larger alias
coverage bitmap, (60K vs 9K). Given that the number of user
threads is the same (3 threads), the difference is caused by
the level of concurrency inherent in btrfs and ext4 design.
As shown in Figure 14, btrfs uses at least 22 background
threads and each thread may additionally fork more helper
threads, while the only background thread for ext4 is the
jbd2 journaling thread. In other words, btrfs is inherently
more concurrent than ext4, and dividing works among more
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Fig. 11: Evaluation of the coverage growth of KRACE when fuzzing
the btrfs file system for a week (168 hours) with various settings.
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Fig. 12: Evaluation of the coverage growth of KRACE when fuzzing
the ext4 file system for a week (168 hours) with various settings.

threads naturally leads to more alias pairs. The similar logic
also applies to why alias coverage saturates much faster in
ext4, the less concurrent file system.

Growth synchronization. In general, the two coverage
metrics grow in synchronization. It is expected that progresses
in the branch coverage will yield new alias coverage too because
new code paths mean new memory accessing instructions and
hence, new alias pairs. However, it is the other direction that
matters more: branch coverage saturates but alias coverage
keeps growing, e.g., starting from hour 75 in the btrfs case
or hour 25 in the ext4 case. In other words, KRACE keeps
finding new execution states (thread interleavings) that would
otherwise be missed if only branch coverage is tracked.

Instrumentation overhead. The code instrumentation from
KRACE is heavy, and we expect it to cause significant overhead
in execution. To show this, we present the aggregated statistics
on the execution time for seeds bearing different numbers
of syscalls. For comparison, we also run these seeds on a
bare-metal kernel built without KRACE instrumentation. The
results are plotted in Figure 13. In summary, in the zero-syscall
case, i.e., by merely loading (file system module) → mounting
(image) → unmounting → unloading, KRACE already incurs
47.6% and 34.3% overhead, and the more syscalls KRACE
executes, the more overhead it accumulates.
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Fig. 13: Evaluation of seed execution and analysis time in KRACE
with a varying number of syscalls in the seed

The overhead mainly comes from memory access instrumen-
tation, as every memory access is now turned into a function
call where atomic operations are performed and synchronized,
not only with respect to all other threads on the VM, but also
against all threads across all VMs, as the thread is updating the
global bitmap on the host directly (implicitly handled by the
QEMU ivshmem module). As a result, further optimizations are
possible. For example, a VM instance may accumulate coverage
locally and update the global bitmap in batches instead of on
every memory access.

It is, however, debatable whether the overhead is detrimental
to KRACE as a fuzzer since lower overhead simply means that
the coverage growth will converge and saturates faster. In our
opinion, we consider the overhead caused by tracking more
coverage (including alias coverage) as a trade-off between
execution speed and seed quality. A fuzzer with fast executions
may waste resources in non-interesting test cases, while a
fuzzer with slow executions but finer-grained tracking might
eventually have higher chances to explore more states.
Data race checking cost. Another limiting factor for KRACE
is the time needed to analyze the execution logs for data
race detection, which also depends on the length of the
execution trace. The trend is also plotted in Figure 13. In
summary, the analysis time ranges from 4-7 minutes (0-30
syscalls per seed) for btrfs and 2-6 minutes for ext4. Such a
time cost is obviously not feasible for online checking (even
after optimization) but can be tolerated for offline checking,
i.e., KRACE schedules a data race check only when a seed
is discovered. This strategy works especially when fuzzing
saturates, as the bottleneck for making further progress then
becomes finding new execution states instead of checking the
trace. Based on our experience, running four checker processes
alongside 24 fuzzing VM instances is more than sufficient to
catch up to the progress within 96 hours in both cases.

C. Component evaluations

Coverage effectiveness. Although the two coverage metrics
represent different aspects of program execution, we are also
curious whether tracking explorations in the concurrency
dimension may help in finding new code paths (represented by
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branch coverage). To check this, we disabled the alias coverage
feedback and let KRACE explore the states mimicking the
feedback loop of existing OS and file system fuzzers. The
results (Figure 11 and Figure 12) show that exploring the
concurrency domain also helps to find new code coverage.
Most notably, without alias coverage feedback, branch coverage
grows much faster at the beginning, because it does not
spend fuzzing effort on exploring the thread interleavings, but
saturates at a lower number (7.2% and 4.0% less). Moreover, if
just counting the new branches explored (besides the branches
in the initial seed), the coverage reduces by 20.4% and 10.7%,
respectively. The more concurrent the file system is, the more
branch coverage will be explored by enabling alias coverage
feedback. This is not surprising, as certain code paths exist to
handle contention in the system, such as the paths executed
when try_lock fails or when sequence lock retries. Exploring
in the concurrency dimension helps to reveal these paths and
boost the branch coverage.

Delay injection effectiveness. To test whether injecting
delays helps in exploration in the concurrency dimension, we
disabled delay injection in this fuzzing experiment, and the
alias coverage growth is shown in Figure 11 and Figure 12.
With delay injection disabled, KRACE found 28.7% and 12.3%
less alias coverage in btrfs and ext4, respectively. This shows
that delay injection is important in finding more alias coverage.
Especially, when the branch coverage saturates, delay injection
becomes the leading force in finding alias coverage, as shown
by the enlarging gap between the growth. The more concurrent
the file system is, the more important delay injection becomes.

Seed merging effectiveness. To test whether reusing the
seed helps in exploration in the concurrency dimension, we
disabled seed merging in this fuzzing experiment, i.e., KRACE
only adds, deletes, and mutates syscalls but never reuses the
found seeds. The alias coverage growth is shown in Figure 11
and Figure 12. With seed merging disabled, KRACE found
37.7% and 14.2% less alias coverage in btrfs and ext4,
respectively. This experiment shows that reusing the seed is
important in quickly expanding the coverage. More importantly,
preserving the semantics among the syscalls and interleaving
the seeds help find more alias coverage.

Components in the data race checker. To show that it is
important to have both happens-before and lockset analysis (and
their sub-components) in the data race checker, we sampled a
simple fuzzing run: load btrfs module, mount an empty image,
execute two syscalls × three threads, unmount the image, and
unload the btrfs module. The following shows the filtering
effects of each component in the data race checker:

• data race candidates: 35,658
+ after lockset analysis on pessimistic locks: 13,347
+ after lockset analysis on optimistic locks: 8,903
+ after tracking fork-style happen-before relation: 6,275
+ after tracking join-style happen-before relation: 3,509
+ after handling publisher-subscriber model: 103
+ after handling ad-hoc schemes: 7 (all benign races)

D. Comparison with related fuzzers

Execution speed vs coverage. In terms of efficiency, KRACE
is not comparable to other OS and file system fuzzers, as
one execution takes at least seven seconds in KRACE, while
the number can be as low as 10 milliseconds for libOS-
based fuzzers [5, 6] or never-refreshing VM-based fuzzers
like Syzkaller. However, the effectiveness of a fuzzer is not
solely decided by fuzzing speed. A more important metric
is the coverage size, especially when saturated. Intuitively, if
the saturated coverage is low, being fast in execution only
implies that the coverage will converge faster and mostly stall
afterward.

On the metric of saturated coverage, KRACE outperforms
Syzkaller for both btrfs and ext4 by 12.3% and 5.5%,
respectively, as shown in Figure 11 and Figure 12. Even
without the alias coverage feedback, the branch coverage from
KRACE still outperforms Syzkaller, showing the effectiveness
of KRACE’s seed evolution strategies, especially the merging
strategy for multi-threaded seeds, which is currently not
available in Syzkaller. In fact, KRACE is able to catch up
to the branch coverage progress with Syzkaller within 30 hours
and eight hours for btrfs and ext4, respectively.
Data race detection. Razzer [24] reports four data races in
file systems and we find the patches for two of them, both in
the VFS layer. To check that KRACE may detect these cases,
we manually revert the patches in the kernel and confirm that
both cases are found. We would like to do the same for SKI [7],
but the data races found by SKI are too old (in 3.13 kernels)
and locating and reverting the patches is not easy.

VIII. CONCLUSION AND FUTURE WORK

This paper presents KRACE, an end-to-end fuzzing frame-
work that brings the concurrency aspects into coverage-guided
file system fuzzing. KRACE achieves this with three new
constructs: 1) the alias coverage metric for tracking exploration
progress in the concurrency dimension, 2) the algorithm for
evolving and merging multi-threaded syscall sequences, and
3) a comprehensive lockset and happens-before modeling for
kernel synchronization primitives. KRACE has uncovered 23
new data races so far and will keep running for more reports.

Looking forward, we plan to extend KRACE in at least three
directions: 1) data race detection in other kernel components;
2) semantic checking for more types of concurrency bugs; and
3) fuzzing distributed file systems that involve not only thread
interleavings but also network event ordering, which requires
completely new coverage metrics to capture.
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APPENDIX

A. Level of concurrency in the btrfs file system

1 struct btrfs_fs_info {
2 /* work queues */
3 struct btrfs_workqueue *workers;
4 struct btrfs_workqueue *delalloc_workers;
5 struct btrfs_workqueue *flush_workers;
6 struct btrfs_workqueue *endio_workers;
7 struct btrfs_workqueue *endio_meta_workers;
8 struct btrfs_workqueue *endio_raid56_workers;
9 struct btrfs_workqueue *endio_repair_workers;

10 struct btrfs_workqueue *rmw_workers;
11 struct btrfs_workqueue *endio_meta_write_workers;
12 struct btrfs_workqueue *endio_write_workers;
13 struct btrfs_workqueue *endio_freespace_worker;
14 struct btrfs_workqueue *submit_workers;
15 struct btrfs_workqueue *caching_workers;
16 struct btrfs_workqueue *readahead_workers;
17 struct btrfs_workqueue *fixup_workers;
18 struct btrfs_workqueue *delayed_workers;
19 struct btrfs_workqueue *scrub_workers;
20 struct btrfs_workqueue *scrub_wr_completion_workers;
21 struct btrfs_workqueue *scrub_parity_workers;
22 struct btrfs_workqueue *qgroup_rescan_workers;
23 /* background threads */
24 struct task_struct *transaction_kthread;
25 struct task_struct *cleaner_kthread;
26 };

Fig. 14: 20 work queues and 2 background threads used by btrfs.
This does not cover all asynchronous activities observable at runtime.

B. Seed evolution in KRACE

1 def fuzzing_loop(ext_limit, mod_limit, rep_limit):
2 while True:
3 program = merge_seeds(select_seed_pair())
4

5 ext_stall = 0
6 while ext_stall < ext_limit:
7 ext_stall++
8 [50%] program.add_syscall()
9 [50%] program.del_syscall()

10

11 mod_stall = 0
12 while mod_stall < mod_limit:
13 mod_stall++
14 [80%] program.mutate()
15 [20%] program.shuffle()
16

17 rep_stall = 0
18 while rep_stall < rep_limit:
19 rep_stall++
20 delay = randomize_delay()
21 cov, log = run(program, delay)
22

23 if not cov.empty():
24 rep_stall = mod_stall = ext_stall = 0
25 schedule_data_race_check(log)
26 prune_and_save_seed(program)

Fig. 15: The seed evolution process (a.k.a the fuzzing loop) in KRACE

Three parameters tunes the behaviors of the seed evolution
loop: namely ext_limit, mod_limit, and rep_limit as shown
in Figure 15. In KRACE, they take the values of 10, 10, and 5
respectively. That is,

• if any new coverage, either branch or alias, is observed
in 5 consecutive runs, KRACE will continue to run the
same multi-threaded seed for 5 more times but with a
new delay schedule each time;

• if no new coverage is observed for 5 consecutive runs,
KRACE starts to mutate the syscall arguments in the multi-
threaded trace or shuffle the syscalls;

• if no new coverage is observed for 50 consecutive runs,
KRACE starts to alter the input structure by adding or
deleting the syscalls in the multi-threaded traces;

• if no new coverage is observed for 500 consecutive runs,
KRACE starts to merge two seeds for a new seed.

C. Ad-hoc synchronization schemes in kernel file systems

Although ad-hoc synchronization schemes are considered
harmful [69], they may still exist in kernel file systems
for performance or functionality enhancements. Whenever
we encounter an ad-hoc scheme (usually when analyzing
false positives), we annotate it in the same way as major
synchronization APIs so that subsequent runs will not report
the false data races caused by it. In this section, we present
two examples we encountered in btrfs.
Ad-hoc locking. An ad-hoc lock has two implications: 1)
there will be data races in the lock implementation and these
data races are all benign races; and 2) lock internals should
be abstracted in a way that the lockset analysis can easily
understand. A representative example is the btrfs tree lock, and
the purpose of having the tree lock is to be convertible between
blocking and non-blocking mode, as shown in Figure 16.

1 /* acquire a spinning write lock, wait for both
2 * blocking readers or writers */
3 void btrfs_tree_lock(struct extent_buffer *eb)
4 {
5 u64 start_ns = 0;
6 if (trace_btrfs_tree_lock_enabled())
7 start_ns = ktime_get_ns();
8

9 WARN_ON(eb->lock_owner == current->pid);
10 again:
11 wait_event(eb->read_lock_wq,
12 atomic_read(&eb->blocking_readers) == 0);
13 wait_event(eb->write_lock_wq, eb->blocking_writers == 0);
14 write_lock(&eb->lock);
15 if (atomic_read(&eb->blocking_readers)
16 || eb->blocking_writers) {
17 write_unlock(&eb->lock);
18 goto again;
19 }
20 btrfs_assert_spinning_writers_get(eb);
21 btrfs_assert_tree_write_locks_get(eb);
22 eb->lock_owner = current->pid;
23 }
24 /* drop a spinning or a blocking write lock. */
25 void btrfs_tree_unlock(struct extent_buffer *eb)
26 {
27 int blockers = eb->blocking_writers;
28 BUG_ON(blockers > 1);
29

30 btrfs_assert_tree_locked(eb);
31 eb->lock_owner = 0;
32 btrfs_assert_tree_write_locks_put(eb);
33

34 if (blockers) {
35 btrfs_assert_no_spinning_writers(eb);
36 eb->blocking_writers--;
37 cond_wake_up(&eb->write_lock_wq);
38 } else {
39 btrfs_assert_spinning_writers_put(eb);
40 write_unlock(&eb->lock);
41 }
42 }

Fig. 16: A snippet of the btrfs tree lock (writer side only).
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Tree lock API Lockset mapping

tree_lock writer-lock

tree_unlock writer-unlock

tree_read_lock reader-lock

tree_read_lock_atomic reader-lock

tree_read_unlock reader-unlock

tree_read_unlock_blocking reader-unlock

tree_set_lock_blocking_read no-op if read-locked

tree_set_lock_blocking_write no-op if write-locked

try_tree_read_lock reader-lock if succeed

try_tree_write_lock writer-lock if succeed

TABLE II: Semantic mapping between the tree lock and conventional
locks (in particular, the readers-writer lock).

In these functions, almost every memory access to the fields
in the extent buffer, eb, could be racing against other accesses.
e.g., eb->lock_owner at line 12 against eb->lock_owner = 0
at line 40. So the first annotation for KRACE is to assume all
data races within these functions are safe and benign races.

To further encode the locking semantics for lockset analysis,
we study the tree lock APIs and map their functionality into a
simple reader-writer lock format as shown in Table II. In other
words, calling the, e.g., tree_lock will be treated equally as
calling the writer-lock in the conventional locking mechanisms.
Although tree_lock performs much more computation (e.g.,
waiting for both blocking and non-blocking readers), from the
lockset perspective, it is equivalent to a writer-lock.
Ad-hoc ordering. Ad-hoc ordering implies undocumented
casual relations between thread executions and a good example
is the customization of the conventional kernel work queue in
btrfs, as shown in Figure 17.

1 static inline void __btrfs_queue_work(struct __btrfs_workqueue *wq,
2 struct btrfs_work *work)
3 {
4 unsigned long flags;
5 work->wq = wq;
6 if (work->ordered_func) {
7 spin_lock_irqsave(&wq->list_lock, flags);
8 list_add_tail(&work->ordered_list, &wq->ordered_list);
9 spin_unlock_irqrestore(&wq->list_lock, flags);

10 }
11 queue_work(wq->normal_wq, &work->normal_work);
12 }
13 static void normal_work_helper(struct btrfs_work *work) {
14 /* ... */
15 work->func(work);
16 if (need_order)
17 set_bit(WORK_DONE_BIT, &work->flags);
18 /* ... */
19 }
20 static void run_ordered_work(struct __btrfs_workqueue *wq) {
21 /* ... */
22 work = list_entry(list->next, struct btrfs_work, ordered_list);
23 if (test_bit(WORK_DONE_BIT, &work->flags))
24 work->ordered_func(work);
25 /* ... */
26 }

Fig. 17: A snippet of the btrfs work queue implementation.

In this example, the set_bit and test_bit (line 17 and
23), establish an additional causal relation beyond the normal
queue_work semantic: the ordered function only gets into
execution when the normal function finishes. Thus, although
the observed happens-before relation is line 8 → line 24 and
line 11 → line 15, the actual relation is line 8 → line 11 →
line 15 → line 24.

D. KRACE implementation details

Component LoC Languange

Compile-time preparation
Kernel annotations 5,653 C
LLVM instrumentation pass 1,977 C++
KRACE kernel runtime library 1,749 C

Fuzzing loop
Seed evolution (including syscall spec.) 9,394 Python
QEMU-based fuzzing executor 5,878 Python
Initramfs and the init program 2,527 Python
Data race checker 6,883 Python
Debugging tools and utilities 1,096 Python

TABLE III: Implementation complexity of KRACE in terms of LoC
measurement of the major components shown in Figure 9.

Runtime executor. The most challenging part of KRACE’s
implementation is to establish information-sharing channels
between the host and VM-based fuzzing instances for seed
injection, coverage tracking, and feedback collection. KRACE
uses private memory mapping (PCI memory bar), public
memory mapping (ivshmem), and the 9p file sharing protocols
for this purpose, as shown in Figure 10.
Kernel building. Building the Linux kernel with LLVM is
straightforward since kernel v5.3 and LLVM 9.0. In addition, to
get the smallest possible boot time, we opt for a minimal kernel
build with only necessary components enabled, including the
block layer, loopback device, and all other related drivers to
support and accelerate execution in QEMU and KVM. File
systems are built as modules, not built-in, and these modules
will be loaded by our fuzzing agent (i.e., the init program)
such that we could track the modules in full, including the
thread they fork on loading and their synchronization orders.
Initramfs. Again, to shorten the execution time, KRACE does
not rely on full-blown OSes, not even tools like busybox, as
they may interfere with the file system under testing. Instead,
the init program in KRACE is the fuzzing agent that takes the
multi-threaded seed and interprets it. In particular, the init 1)
starts tracing, 2) loads file system modules, 3) mounts the file
system image, 4) interprets the program, 5) unmounts the file
system image, 6) unloads the modules, and 7) stops tracing.
Coverage tracking. Coverage tracking is handled by the
instrumented code which are essentially stub calls, e.g.,
on_basic_block_enter, on_memory_read, etc., into the KRACE
runtime library. KRACE directly updates the coverage bitmaps
maintained in the host memory regions that are globally visible
to all VM instances (and their threads). Effectively, each update
is a test_and_set_bit operation while the QEMU ivshmem
protocol ensures atomicity.
Execution log. An execution log is simply an array of
[<event-type>, <thread-id>, <arg1>, <arg2>, ...] filled
by the KRACE runtime library and consumed by the data race
checker for data race detection as well as reporting purposes
such as call trace reconstruction.

E. A taste of the happens-before complexity in actual execution
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Fig. 18: A taste of the happens-before relation tracking in btrfs file system. This snippet is only around 10% of the actual
happens-before graph tracked in this execution. Each node in the graph is a synchronization point represented by a three-tuple
<thread id, context id, instruction id> and the directed edge between two nodes A and B means A happens-before B.
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