Contextual Concurrency Control

SujinPark Irina Calciu ~ Taesoo Kim Sanidhya Kashyap

Ge‘%—gjﬁ@ vmware EPFL

—

Locks in everywhere!

mongo

7 y[\L

@Spork
Operating systems Cloud services Data processing Databases
systems
4)

Synchronization mechanisms
Basic building block for designing applications

Locks are critical for application performance

Typical application performance on a multicore machine

0.40M

-

0.35M
0.30M \

0.25M »
0.20M
0.15M
0.10M

Operations / second

0.05M
Y L Ak pD AL 0© ,\/LO '\P‘b‘ ,\6‘2) ,\9'7, ,bcbbx

threads

Locks are critical for application scalability

Typical application performance on a manycore machine

S
<

g

Far from ideal

g

Operations / second
S
<

-
<

threads

One lock cannot rule all of them!

Evolving hardware

dWs
Read-intensive workload -
1.2 I
] g
1 . >
//\—\/\\B.RAVO 6t
0.8
06 |{
02 ¢ Various applications & requirements
O 1710 20 30 40 50 60 70 80 oo

of thread .

A Spor‘l?z Mv

Specialization bridges the semantic gap

it

Applications

— S -

emantic Gap

Specialization bridges the semantic gap

Specialization

Applications I Il Kernel
- Semantic Gap -

Storage

Network

Accelerator

Synchronization

Can we tune lock policy on the fly?

Contextual Concurrency Control

New paradigm to tune synchronization mechanism

from user space

Need for user-defined locks on the fly

Lock implementations are application agnostic

Only few locks contend for a given application

May need a variant of a lock based on the workload

CoNcorD Framework

Lock implementations are application agnostic

— Let application developers to tune locks in the kernel on the fly

Only few locks contend for a given application

— Modify set of locks at various granularities

May need a variant of a lock based on the workload

— Exposes set of APIs to modify lock algorithms

CONCORD Overview

€ User create

lock policy

User

move if true

sock 1

sock 3

sock 6

sock 1

B

lock

waiters in queue

Example :

return (pre->sock == cur->sock) ;

bool cmp_node(node* pre, node* cur){

Grouping node from same socket

Kernel

COoNCORD Overview

User Kernel

@ User create oty @ Load the policy @
lock policy e

v'_ memory access

€ Verify given
lock policy

— Lock shouldn’t be changed arbitrary
v helper functions

— Only whitelisted functions can be called
v’ code termination

— No hanging policy

COoNCORD Overview

€ User create
lock policy

Read allowed for pre, cur ?

User Kernel
policy @ Load the policy €@ Verify given
— lock policy

———— ¥ _memory access

— Lock shouldn’t be changed arbitrary

bool cmp_node(node* pre, node* cur){

return (pre->sock == cur->sock) ;

Function /4/—\/ helper functions

T call? — Only whitelisted functions can be called

v' code termination

§ — No hanging polic
— Any loop | JINI POHEY

in policy?

COoNCORD Overview

- target point N function
é ©® Patch locking function

User Kernel

@ User create oty @ Load the policy @
lock policy [~ __|

O Create patch to specify

€ Verify given
lock policy

Patched locking

to run with given policy

All spinlocks in the kernel
Spinlocks used in filesystem

A spinlock used in an inode

14

Safety and APIs

Reordering waiters Profiling

bool cmp_node(lock, node, node){} void lock_acquire(lock){}

bool skip_shuffle(lock, node){} void lock_contended(lock){}

void lock_acquired(lock){}

void lock_release(lock){}

e Flexibility to change lock on the fly c Fine-grained lock profiling

A Fairness A Increase critical section

Ensure mutual exclusion & safe from crashing

15

Usecase

will receive fair CPU time

mmm—— ————
- =~ - =~
o ~ - ~

|- \\l’

t1 t2 competing for same lock |
0) RNA
Lock Waiting queue Lock Waiting queue
Scheduler-Cooperative Locks?

holds lock x3 longer penalized: have less opportunity to grab a lock

will receive x3 much CPU time!

1. Avoiding Scheduler Subversion using Scheduler-Cooperative Locks. Eurosys’20

Usecase

t2 competing for sa

o

o

Lock

,D :

Waiting queue\A

holds lock x3 longer

will receive fair CPU time

- ~. -
,,,,,,,,

|- \\l’

~.
~
~

L) oo

me lock |
S - OO0

Lock

will receive x3 much CPU time!

Waiting queue
Scheduler-Coo

Will this fairness always beneficial?

Let application developers enforce this fairness only when needed

perative Locks?

penalized: have less opportunity to grab a lock

1. Avoiding Scheduler Subversion using Scheduler-Cooperative Locks. Eurosys’20

Overhead of CONCORD

BRAVO lock

Ops/msec

0 M+t : : : : : : :
1 10 20 30 40 50 60 70 80
of thread

+ _._
e Overhead of CONCORD-lock compared to pre-compiled lock

* Almost negligible overhead (And now we can change lock on the fly!)

Conclusions

« Kernel locks are critical for application performance and scalability

« QOut of the reach of application developers

* C3 : Contextual Concurrency Control

* Let userspace application to fine tune concurrency control

* CONCORD Framework

* Exposes a set of APIs
« Apply to specific target locks (instead of all locks in the kernel)
* Change locks on the fly with minimal overhead

