
Ship your Critical Section, Not Your Data:

Enabling Transparent Delegation with TCLocks

Vishal Gupta Kumar Kartikeya Dwivedi ∗ Yugesh Kothari Yueyang Pan

Diyu Zhou Sanidhya Kashyap

EPFL ∗SRMIST

Abstract

Today’s high-performance applications heavily rely on
various synchronization mechanisms, such as locks. While
locks ensure mutual exclusion of shared data, their design
impacts application scalability. Locks, as used in practice,
move the lock-guarded shared data to the core holding it,
which leads to shared data transfer among cores. This design
adds unavoidable critical path latency leading to performance
scalability issues. Meanwhile, some locks avoid this shared
data movement by localizing the access to shared data on
one core, and shipping the critical section to that specific
core. However, such locks require modifying applications
to explicitly package the critical section, which makes it
virtually infeasible for complicated applications with large
code bases, such as the Linux kernel.

We propose transparent delegation, in which a waiter auto-
matically encodes its critical section information on its stack
and notifies the combiner (lock holder). The combiner exe-
cutes the shipped critical section on the waiter’s behalf using
a lightweight context switch. Using transparent delegation,
we design a family of locking protocols, called TCLocks, that
requires zero modification to applications’ logic. The evalua-
tion shows that TCLocks provide up to 5.2× performance
improvement compared with recent locking algorithms.

1 Introduction

Synchronization mechanisms are the basic building blocks
for today’s high-performance concurrent applications. In
fact, applications heavily rely on locks as a concurrency
control mechanism, as they provide a set of simple pro-
gramming APIs for users to mediate concurrent access to
shared data. Besides ensuring program correctness, locks
also affect the scalability of applications [33, 34, 49]. For
instance, various high-performance applications, such as
the Linux kernel, have moved from coarse-grained to fine-
grained locks [52] for minimizing the length of the critical
section. However, thanks to diverse workloads and appli-
cations, the scalability problem due to lock algorithms still
remains at large [41, 55, 62, 70].

0

2

4

6

8

28 56 84 11
2

14
0

16
8

19
6

22
4

1
4
16
64
256
1024

28 56 84 11
2

14
0

16
8

19
6

22
4

M
O
ps
/s
ec

of threads

Stock ShflLock
(a) Enumerate shared directory files

Ti
m
e
(µ
s)

of threads

CNA TCLock
(b) Time spent in the critical section

Figure 1: Impact of locks on a file-system micro-benchmark [62].
We compare three traditional lock algorithms: Linux’s qspin-
lock (Stock) [41], CNA [43] and ShflLock [52] with our proposed
TCLock. (a) Enumerating files in a shared directory on an 8-socket
224-core machine. (b) Time spent in the critical section: moving the
critical section context (TCLock) compared with moving critical
section shared data (Stock, CNA, and ShflLock).

As a result, research in lock algorithms focuses on min-
imizing the contention on cache-lines containing the lock
word and shared data. The most widely used algorithms al-
ways move the shared data to the core executing the critical
section [30, 41, 43, 52, 53, 60]. Lock evolution within this de-
sign philosophy has focused on reducing contention on the
lock word. However, such a lock design still moves shared
data across cores for every lock acquisition. Figure 1 shows
that such shared data access cost increases with increasing
cores, thereby limiting the scalability of applications.

On the other end of the design spectrum, some algorithms
adopt the request-response style of communication, also
called delegation-style locking [37, 47, 51, 56, 64, 67]. Specifi-
cally, waiters delegate their critical section execution context
to a dedicated core [56, 67] or a combiner [47, 51] that exe-
cutes that function on behalf of eachwaiter in a specific order.
Figure 1 illustrates that this design outperforms traditional
locks and improves application performance. In particular,
such a lock design minimizes the shared data movement, and
ensures almost constant critical section latency regardless
of the number of threads.

Despite potential performance gains, the practical design
and implementation of delegation-style locks faces several
challenges. First, applications require major rewriting to ex-

plicitly encapsulate and pass the critical section as a function
pointer [51, 56, 67]. Unfortunately, this rewriting becomes
impractical for applications with large code bases, such as
the Linux kernel, which has over 180k lock API call sites [52].
Second, every delegation-based work focuses on situations
involving a single lock contention. However, today’s appli-
cations often employ fine-grained locking and may acquire
multiple locks for operations, such as memory, scheduler,
and storage management in the Linux kernel [4, 12, 13, 20].
Finally, the third challenge involves managing the per-CPU
or per-thread variables, which applications heavily depend
on for either performance or correctness.
In this paper, we take the first step towards making

delegation-based locks practical for concurrent applications
with large code bases. We introduce the idea of transparent
delegation, which enables developers to utilize delegation-
style locking without rewriting the application. Our trans-
parent delegation approach encapsulates the critical section
using two observations: First, a thread’s stack and CPU
registers contain the state of the waiter’s thread. Second,
using the lock/unlock API pushes the thread’s context on its
stack. Thus, a waiter saves its critical section context using
CPU registers and stack pointer, and calling the lock API as a
function. Finally, the combiner executes the waiter’s critical
section on its behalf by assuming the role of the waiter us-
ing a lightweight context switch mechanism [29, 59]. This
context-switch mechanism is transparent to the application.
Using transparent delegation, we design a new family of

locks called TCLocks that augment existing locks, such as
test-and-set (TAS) and MCS, by employing the combining
technique for batching waiters’ requests [47]. Our first lock
is a spinlock, wherewaiters continuously spinwhile awaiting
the lock. The combiner can execute multiple waiter’s criti-
cal section before passing its role based on a counter-based
mechanism. Similar to our prior work (ShflLocks) [52], our
algorithms can enforce hardware and software policies on
the fly. In particular, our spinlock version also incorporates
NUMA-awareness policy. We then integrate the core over-
subscription policy [52] to design a blocking lock, where
the waiter can sleep while waiting for the lock. Lastly, we
design a phase-based readers-writer lock built on top of our
blocking lock.

Applying TCLocks directly in highly concurrent systems
presents its own set of challenges. First, transparent delega-
tion violates the single-writer property of a thread’s stack,
meaning that two threads (the combiner and the waiter)
writing to the same stack can cause data races and stack
corruption. Waiters need access to a stack due to specific
events, such as interrupts in the kernel space, signals in
userspace, and scheduling of waiting threads. We address
the data-race issue using a per-thread ephemeral stack that a
waiter switches to between the acquire and release phases.

Second, most concurrent applications use multi-level lock-
ing [4, 20, 28] and out-of-order (OOO) unlocking [12, 13]

for higher concurrency and better scalability. TCLocks han-
dle the arbitrary level of nested combining by maintaining
combiner-specific state on the ephemeral stack before acquir-
ing the nested lock. Meanwhile, we handle OOO unlocking
by keeping track of the order of acquired locks. We delay
the release of OOO unlocked locks until the order is the in-
verse of acquired locks. This effectively flattens the release
of locks.

We evaluate TCLocks in both kernel space and userspace
on NUMA machines. TCLocks improve the performance
within and across sockets. Specifically, TCLocks boost appli-
cation throughput by 1.7–5.2× compared to the locks used
in the Linux kernel and state-of-the-art locks, respectively.

In summary, this paper makes the following contributions:
• Design technique. We introduce a new design tech-
nique called transparent delegation. Locks with this
technique allow developers to use the same APIs as
traditional locks while benefiting from the scalability
improvements provided by delegation-style locking.

• Delegation-based lock family. We implement
TCLocks that employ transparent delegation. We first
design a spinning lock and extend it to blocking and
readers-writer locks, utilizing per-thread ephemeral
stacks to manage the parking of waiters.

• Practical application. TCLocks incorporate various
lock use scenarios, including nested locking and out-
of-order unlocking. This approach allows us to realize
the potential of delegation-style locking for the Linux
kernel without modifying any code.

2 Background

While executing a critical section, a thread accesses three
types of memory locations (data):
1. Lock word, i.e., its structure that determines the exclu-

sive access for a thread.
2. Shared data among threads guarded by a lock word,

accessible only to the thread holding the lock.
3. Thread-local data like stack and per-thread variables.

Most lock designs minimize the contention on the lock word,
while some minimize the movement of shared data. Hence,
there are two design philosophies based on shared data move-
ment: traditional and delegation-style. We now discuss the
evolution of locks based on these design philosophies. Later,
we touch upon the systems-level challenges that are specific
to delegation-style locks.
2.1 Traditional Locks

Traditional lock design adheres to the principle of moving
data to computation. A core executes the critical section
by moving shared data into its cache. Consequently, this
design moves cache lines of both the lock word and shared
data across cores while executing the critical section. The
evolution of traditional lock algorithms [50] has focused
on minimizing cache-line movement of the lock word. For
example, queue-based locks [41, 42, 44, 58, 60, 68] minimize

cache-line contention due to the lock word. Hierarchical
locks [39, 46, 57, 66] further reduce the cache-line contention
on non-uniform memory access (NUMA) machines, where
accessing a local-socket memory location is faster than a
remote one. These locks amortize the remote access cost
of the lock word by reordering the wait queue to pass the
lock within the same socket. ShflLock [52] and CNA [43]
further generalize hierarchical lock design by reordering
the wait queue based on various hardware and software
policies. Moreover, our recent work [65] has also shown that
the reordering policy can be changed dynamically without
kernel compilation.
Readers-writer locks also follow traditional lock design,

with most locks aiming to minimize contention on the lock
word [36, 54, 61]. These locks augment mutually exclusive
locks with different types of read indicators based on work-
load requirements. Some examples include centralized [61],
per-socket [38], and per-CPU [40, 63, 71] indicators. These
locks also require moving shared data across cores, even
though they offer a broader semantics of mutual exclusion.
Traditional locks do not require modifying applications

since the lock/unlock programming APIs remain consistent.
However, these locks move shared data cache lines among
cores while executing the critical section. Unfortunately, this
lock design incurs shared data movement for every critical
section execution, thereby increasing critical section execu-
tion latency. Moreover, this latency grows with increasing
core count (Figure 1 (b)), which saturates the throughput
without efficiently utilizing hardware.
2.2 Delegation-style Locks

Delegation-style locks follow the principle of moving com-
putation to data [45, 47, 51, 56, 64, 67]. These locks use
an old technique called combining that has been used in
hardware and software to mitigate memory contention by
combining requests for the same memory location. In this
approach, waiters pack their critical section as a function and
pass that function pointer to the combiner as a request. The
combiner then executes the waiter’s function and notifies it
upon completion. Executing the critical section on the same
core eliminates shared data movement, leading to improved
application throughput with increasing core count (Figure 1).
However, this lock design has a critical limitation. It

does not provide the same lock/unlock APIs as traditional
locks [47, 67]. Consequently, we need to modify applications,
which involves identifying each critical section in the code,
wrapping it as a function, and modularizing the application
logic for delegation. Modifying application logic to encapsu-
late the critical section as a function is quite challenging and
even impossible in some cases [46]. For instance, Roghanchi
et al. [67] reported modifying ∼1,500 lines of code (LoC) to
enable delegation for Memcached. This limitation, unfortu-
nately, prevents the scalability offered by delegation-style
locking from being applied to existing real-world applica-

tions, such as Linux, which comprises 28M LoC with more
than 180k static lock call sites.
2.3 The Incompatibility of Delegation in Concurrent

Applications

Real-world applications, such as the Linux kernel, employ
fine-grained locking in multiple execution contexts. Fine-
grained locking mostly involves acquiring multiple nested
locks when working with several objects. To prevent dead-
locks, the nested locks are acquired in a specific order, but
they can be released in arbitrary order to enhance concur-
rency [12, 13]. However, none of the delegation approaches
handle such common, but challenging cases. We measured
that both nested locking calls and OOO unlocking calls are
quite prevalent. For instance, booting Linux results in ∼80k
nested locking calls and ∼20k OOO unlock calls. Thus, ad-
dressing these cases is essential to make delegation-style
locks practical for every concurrent systems software.
In addition, the Linux kernel can call locks from various

contexts. These contexts comprise of task [25] and inter-
rupts (e.g., non-maskable interrupt context [11], HardIRQ
context [6, 7], or SoftIRQ context [23])). The kernel code typ-
ically executes in the task context. Depending on the kernel
configuration, a scheduler can preempt or migrate a task to
another CPU. Nevertheless, in special execution contexts,
such as interrupts, or code regions that disable CPU preemp-
tion and migration, the scheduler prohibits the migration of
such contexts. The Linux kernel code also heavily utilizes
per-CPU variables and implicitly relies on stable access to
these variables in such special execution contexts. Tradi-
tional lock design does not require any handling for special
execution contexts because the critical section executes on
the core that acquires the lock. In contrast, delegation-style
locks break this property, necessitating special handling for
these cases, i.e., special contexts and stable access to per-CPU
variables.
Goal. In accordance with the general design principle of
minimizing data movement [43, 52], our objective is to re-
duce data movement for both lock word and shared data.
Unlike existing delegation-style locks, we avoid making any
code modifications. Hence, we take the initial step towards
achieving the goal of transparently enabling delegation-style
locking for any real-world application, including the OS.

3 TCLocks

We propose transparent delegation, a practical lock-design
technique for real-world applications that allow developers
to use the same lock/unlock APIs as traditional locks with-
out modifying the application code. Transparent delegation
involves two steps: First, it automatically encapsulates a
critical section of arbitrary length in a set of registers and
the thread stack. Second, waiters pass this encapsulated in-
formation to the combiner for execution. As a result, our
approach enables applications to enjoy scalability without
any modification. We apply this technique to design a family

of lock algorithms called TCLocks, that transparently dele-
gate waiters’ requests to the combiner. TCLocks comprises
spinning (§3.2) and blocking (§3.4) locks. We extend the
blocking lock with read indicators to design a phase-based
readers-writer blocking lock (§3.5) incorporating hardware
and software-based optimizations (§3.6).
3.1 TCLock Design

We first discuss a set of insights and techniques that allows
us to design and implement TCLocks.
Transparent delegation. When executing a critical sec-
tion, a thread can access both shared data (e.g., global vari-
ables, heap) and thread-local data (e.g., registers, stack, and
per-thread variables). In delegation-style locking, although
shared data is globally available to all threads, the combiner
requires access to the waiter’s thread-local data and the set
of instructions for executing its critical section.
Our technique overcomes the challenge of thread-local

data and critical section context using three key insights.
1. A thread’s execution context is well-defined by hard-

ware, with thread-specific CPU registers and the stack
containing all information for executing the critical sec-
tion [2, 8, 10].

2. A waiter busy-waits without modifying its state once
it sends its request to the combiner. It exits only after
receiving the response from the combiner.

3. Calling the lock API as a function1 ensures that hard-
ware pushes the next instruction onto the stack, making
the critical section’s start address available to the com-
biner for executing the critical section.

Using these insights, the combiner pops the start address
of a critical section from the waiter’s stack using a return
instruction and executes it. After completing the critical
section, calling the unlock API pushes the first instruction of
the non-critical section onto the waiter’s stack. The waiter
resumes executing the non-critical section after receiving a
notification from the combiner. Thus, transparent delegation
allows waiters to seamlessly pass context and resume after
the critical section’s execution.
Avoiding concurrent stack access with an ephemeral

stack. To ensure program correctness, transparent delega-
tionmust prevent concurrent accesses to a thread’s execution
stack. Ideally, a waiter busy-waits for notification during
its critical section execution. However, certain events, such
as interrupts in kernel space, signals in user space, and the
waiter’s parking and wake-up mechanism [32] can access
the waiter’s stack during the execution of its delegated crit-
ical section. As a result, naive transparent delegation via
stack switching violates the fundamental single-writer stack
principle, leading to potential stack state corruption.

To address this issue, we introduce an initially empty, sep-
arate stack called the ephemeral stack. Each waiter switches
to its ephemeral stack during lock acquisition, and delegates

1For example, the call instruction in x86.

notify waiter

t1

E1

t2

E2

(c) t1

t1

t3

E3

t1

E1

t2

E2

(d) t1

t3

E3

t1

E1

t2

E2

(f) t1

t3

E3

t1

M2

t2

E2

(e) t1

t3

E3

t1

E1

t2

M2

(g) t1

t3

E3

t1

M1

(h) t1

t3

E3

(a)

glock
tail

lock combiner
phase

lock byte

qnode

status
next

Stack
in use

Mi

t1

M1

(b)
t1

E1

: combiner
: locked/unlocked
: ti main stackMi
: ti ephemeral stack
: waiter being processed

Ei

Figure 2: Lock and qnode structures of the TCLock. (a) Initially, the
lock is in the unlock state. t1 first switches from its main stack (M1)
to the ephemeral stack (E1), and (b) joins the waiting queue. (c) t1

being at the head of the queue, becomes the combiner. Meanwhile,
t2 and t3 join the queue. They also switch their stack to E2 and E3,
respectively. (d) t1 begins the combining process by traversing the
queue and finds t2. (e) t1 switches to t2’s main stack (E1 → M2) and
executes t2’s critical section. (f) Once finished, t1 first switches
back to E1 and then notifies t2 that t1 has finished executing its
critical section. (g) t2 then switches back to M2 and exits its unlock
phase. Meanwhile, t1 finds t3 as the last waiter. (h) t1 notifies t3

that it is now at the head of the queue, then t1 switches its stack to
M1, executes its critical section, and finally exits the unlock phase.

its critical section to the combiner. The waiter then busy-
waits using the ephemeral stack while the combiner accesses
the waiter’s main stack to execute the critical section. Impor-
tantly, the use of an ephemeral stack does not introduce any
new stack overflow bugs since it is a separate memory from
the thread’s execution stack. By incorporating the ephemeral
stack, TCLocks maintain the single-writer principle, thereby
preventing concurrent access and the corruption of waiters’
stack.
3.2 Spinlock: TCLock

SP

TCLockSP augments the TAS and MCS lock by adopting the
combining technique from MCS-style combining works [45,
47]. It involves a waiting thread becoming a combiner and
batch waiters’ requests up to a set threshold. Specifically,
TCLock extends the DSM-Synch lock, using TAS as a top-
level lock, and an MCS-style waiting queue for waiters. The
waiter’s queue node (qnode) maintains additional states: 1)
request and wait flags for synchronizing between a waiter
and the combiner and selecting the next combiner. 2) Socket
ID for NUMA lock design (§3.6.3). 3) Batch count to limit

excessive waiters, causing starvation or long-term fairness
issues. And, 4) a pointer to the waiter’s thread context for
transparent delegation, which includes all registers and the
stack pointer.
Transparent delegation invariants. Our lock algorithm
maintains four invariants: 1) A combiner is always at the
head of the waiting queue. 2) A waiter never uses its main
stack while busy waiting. 3) All instructions in a critical
section are executed only once, either by a waiter or the
combiner executing on the waiter’s behalf. 4) A combiner
exclusively executes the waiter’s critical section instructions
defined between the lock and the unlock phase.
Workflow. Figure 2 presents a running example of
TCLockSP. Before requesting a lock, every thread executes
in its main context (a). When a thread requests a lock, it
switches to an ephemeral stack, saves its main context in
its qnode, and joins the queue (b). Now, the head of the
queue (t1) becomes the combiner, while other threads (t2
and t3) join the queue after switching to their respective
ephemeral stacks. They wait for notification from the com-
biner, while processing any interrupts and signals on their
ephemeral stacks. The combiner iterates through the queue
and finds t2’s request (d). t1 context-switches to t2’s main
context using t2’s qnode, and starts executing t2’s critical
section (e). Reaching the unlock API of t2, t1 switches back
to its ephemeral stack, notifies t2, and checks for other re-
quests (f). Once t2 receives notification, it switches back
to its main context, which now points to the end of the
critical section. It then continues executing its non-critical
section (g). Finally, the combiner iterates through the entire
queue, it passes the combining role to t3, switches to its
main context, and executes its critical section (h). Finally, t1
unlocks the lock, allowing t3 to acquire it and continue the
combining process.
Algorithm. Listing 1 presents the TCLockSP pseudocode. A
thread t first attempts to acquire the TAS lock on the fast path
(line 17). On success, t executes its critical section directly.
Otherwise, t finds its thread-local combining structure (line
21), saves its register state on the main stack, switches to the
ephemeral stack, and begins the slow path (lines 26–27). The
slow path comprises four phases: 1) t joins the queue and
busy-waits locally. 2) t then waits to acquire the TAS lock
after becoming the head of the queue. 3) After acquiring the
TAS lock, t checks the combining conditions. 4) Finally, t
combines waiters’ critical sections.
Phase 1: Busy-waiting phase. Upon entering the slow path,
t initializes its qnode (line 32). Specifically, it sets the wait
field to True, request field to UNPRCSD, and the next pointer
to None. The combiner notifies a waiter with the wait flag
and uses the request flag to specify whether it executed a
waiter’s critical section. t then adds itself to the waiting
queue by atomically swapping the tail with the qnode’s ad-
dress (line 36). After that, t checks for any preceding waiters

in the queue. If true, t joins the queue as a waiter (line
38) and waits for the combiner’s notification (lines 39–40);
otherwise, it proceeds to phase 2. While in the queue, t busy-
waits for the combiner to execute its critical section. After
reaching the end of t’s critical section, the combiner pushes
the first instruction after the unlock API (line 107) on t’s
main stack. It then marks t’s request as complete (i.e., PRCSD)
(line 28), which switches to its main context and begins the
non-critical section (line 107). If, however, t’s request is not
completed, t reaches the head of the queue and moves to
phase 2.
Phase 2: Global lock acquisition phase. t now tries to acquire
the TAS (global) lock using the CAS operation (lines 46–50).
Phase 3: Combining-role decision phase. After acquiring the
global lock, t checks whether it can be a combiner (lines 52–
56). If t is the only one in the queue, it resets the queue tail,
(lines 52–53), switches to its main stack (line 28), executes its
critical section, and releases the lock. Otherwise, t checks if
there are at least two waiters in the queue. If true, t proceeds
to phase 4 as a combiner. Otherwise, t passes the combining
role to the next waiter (lines 58–60) by setting the wait bit to
false, and releases the lock after executing its critical section.
Phase 4: Combining phase. t begins the combining phase
by disabling the fast path, thereby forcing new waiters to
join the queue (line 63). t iterates over the queue to execute
each waiter’s critical section (lines 65–75). Within the loop, t
selects the next waiter (4a line 67), and records the waiter’s
information (qnode) in its thread-local combiner struct (cst)
to later use it for resuming the combining process. Then t
switches from its ephemeral stack to the waiter’s main stack,
and executes the waiter’s critical section (4b line 70). Once
finished, t notifies the waiter by first setting the request
flag to PRCSD and resetting the wait flag (4c line 72). t con-
tinuously iterates until it reaches the combining threshold
or cannot find two subsequent waiters in the queue (4d
lines 73–75). After exiting the loop, t ends the combining
phase by changing the locking mode to the non-combining
mode (line 77). t then notifies the next waiter to be the head
of the queue (line 78), and finally executes its critical section.

During the unlock phase, t can be in one of the two states:
G_LOCKED: t unlocks the TAS lock by resetting its value
and returns (lines 92–94). G_LOCKED_COMBINER: t does
not release the TAS lock. It context switches from a waiter
to the combiner by switching from the waiter’s main stack
to the combiner’s ephemeral stack (lines 98) After switching,
t resumes the combining loop and notifies the waiter about
the completion of the critical section (line 72).
3.3 Proof Sketch of Correctness

Mutual exclusion. TCLock ensures mutual exclusion by
maintaining two invariants: First, only one thread can hold
the global TAS lock, which can also be a combiner; Second,
the main stack of a thread is active on only one thread at any
time. TCLock piggybacks on the mutual exclusion property

1 PRCSD = 0 # Waiter's request is processed by the combiner
2 UNPRCSD = 1 # Waiter's request is not processed until now
3 G_UNLOCK = 0, G_LOCKED = 1 # TAS known states
4 G_LOCKED_COMBINER = 2 # State to mark combining phase
5 WAITERS_TO_COMBINE = 1024 # Combining batch count
6
7 class thread_local_combiner_struct:
8 qcurr = None, qprev = None, qnext = None, node = init_node()
9 counter = 0, lock_addr = Array[None]
10 estack_rsp = init_ephemeral_stack()
11
12 class lock:
13 glock = 0, tail = None # TAS: top level lock, MCS queue
14
15 def spin_lock(lock):
16 # Fastpath: Try to acquire the TAS lock
17 if CAS(&lock.glock, G_UNLOCK, G_LOCKED) == G_UNLOCK:
18 return # Got the lock, going to execute the critical section
19
20 # Switch to the ephemeral stack and acquire the lock in slowpath
21 cst = this_thread_comb_struct() # Get the per-CPU combiner struct
22 switch_stack(lock, cst) # Switch stack and begin slowpath function
23 return
24
25 def switch_stack(lock, cst):
26 switch_to_ephemeral_stack(cst.node) # Main → ephemeral stack
27 lock_slowpath(lock, cst)
28 switch_from_ephemeral_stack(cst.node) # Ephemeral → main stack
29
30 def lock_slowpath(lock, cst):
31 qnode = cst.node # Get the pointer to qnode in the combiner struct
32 init_qnode(qnode, wait = True, request = UNPRCSD ,
33 next = None, skt_id = numa_id()) # Initialize waiter's qnode
34
35 # Phase 1: Busy waiting: Join the queue and wait until notified
36 qprev = SWAP(&lock.tail, &qnode) # Atomically add node to tail
37 if qprev is not None: # Waiters are already present in the queue
38 qprev.next = qnode # Link qprev with qnode to form a queue
39 while qnode.wait is True:
40 continue # Wait for the combiner to halt waiter's spinning
41 if qnode.request == PRCSD : # Waiter request has been processed
42 return #Combiner executed my CS; jump to non critical section
43
44 # Phase 2: Global lock acquisition: Acquire the TAS lock
45 # Waiter is at the head of the queue; get the TAS lock
46 while True: # Wait for the glock to be unlocked
47 while lock.glock != G_UNLOCK:
48 continue
49 if CAS(&lock.glock, G_UNLOCK, G_LOCKED) == G_UNLOCK:
50 break # Got the TAS lock

51 # Phase 3: Combining-role decision: Whether to combine
52 if CAS(&lock.tail, qnode, None) == qnode:
53 return # If only one in the queue, return
54 qnext = qnode.next # Someone joined the queue; get qnode ptr
55 while qnext is None:
56 qnext = qnode.next
57 # If there are at least two waiters, start combining
58 if qnext.next == None:
59 notify_next_queue_head(qnext) # next waiter is combiner
60 return
61
62 # Phase 4: Combining: Batch requests with dynamic policies
63 lock.glock = G_LOCKED_COMBINER # Declare combining phase
64 counter = 0
65 while True: # Combiner loop
66 qcurr = qnext # Get the very next waiter after combiner

67 qnext = select_next_waiter(qcurr) # 4a Get the next node
68 cst.qcurr = qcurr # For qcurr's stack switch in unlock()
69 # 4b Combiner's ephemeral stack → next waiter's stack
70 switch_stack_from_combiner_to_waiter(cst, qcurr)
71 # Waiter's critical section execution finished
72 notify_waiter(qnode) # 4c Mark as completed
73 if qnext is None or qnext.next is None or
74 counter >= WAITERS_TO_COMBINE: # 4d Check comb. cond.
75 break
76 # Combiner phase is over, now combiner runs its CS
77 lock.glock = G_LOCKED # Reset TAS lock to normal lock
78 notify_next_queue_head(qnext) # Next waiter is the combiner
79
80 # Select the next node based on the policy, eg., NUMA etc.
81 def select_next_waiter(qnode):
82 return qnode.next
83
84 def notify_next_queue_head(qnode):
85 qnode.wait = False
86
87 def notify_waiter(qnode):
88 qnode.request = PRCSD
89 qnode.wait = False
90
91 def spin_unlock(lock):
92 if lock.glock == G_LOCKED:
93 lock.glock = G_UNLOCK # Only true for no combining phase
94 return
95 # Jump back to combiner
96 cst = this_cpu_comb_struct()
97 # Waiter's stack → combiner's ephemeral stack
98 switch_stack_from_waiter_to_combiner(cst.qcurr, cst)
99 return

Phase 1: wait
for notification

CS combined
stack switch

Execute
non CS

return jumps
to non-CS

Phase 4: Start

combining

Jump to
next waiter

Execute
waiter's CS

spin_unlock:

Switch to
combiner stack

Notify
waiterW

ai
te

r

Combiner
Line 25-26

Switch to
ephemeral
stack

Line 62-66 Line 67-70 Line 92-98 Line 72-75

Line 39-40

Phase 2
Phase 3

Line 44-60

Line 28

Line 41-42

Line 104-106

Line 23

Execute
waiter's CS

Line 104-106

Line 23

Line 107Line 99
Pass combiner
role and

switch_stack

Line 28

Line 76-78

Call
spin_lock

Line 16-22

Line 103

Start
slowpath

I II III

IV

Line 30-36

Line 27

: Main stack
: Ephemeral stack

V

Listing 1: Pseudocode of TCLock along with the algorithm flow. In the bottom figure, Shade of the boxes show which stack is currently
active and the numbers I – V shows stack switching locations in the algorithm. At each of these locations, following return addresses
are present on the outgoing stack: I Outgoing: Waiters’ main stack→ line 23. II Outgoing: Combiner’s ephemeral stack→ line 71. III
Outgoing: Waiter’s main stack→ line 99. IV and V Outgoing: waiter’s and combiner’s ephemeral stack→ contents are discarded.

of the TAS lock as it uses atomic compare-and-swap (CAS)
to guarantee thread exclusivity. Hence, thanks to the TAS
lock, only one thread can hold the global lock at any given
point and only one thread can access shared data at a time.
Finally, our transparent delegation invariants ensure that a
waiter never touches its own main stack while waiting for
a combiner’s notification. Moreover, TCLock ensures that

the switch from the waiter’s main stack to the combiner’s
ephemeral stack (line 98) occurs at the end of the critical
section, i.e., at the end of the unlock function. Thus, after
the waiter restores its context from the main stack (line 28),
it never enters its critical section.
Correct thread state. TCLock preserves the correct
waiter’s state using a lightweight context switch mechanism

and avoids concurrent stack modification. Specifically, a
waiter yields ownership of its main stack (line 26) before
joining the waiting queue (line 36). Thus, a combiner thread
can only obtain the ownership of a waiter thread’s main
stack after the waiter gives up the ownership. Finally, the
combiner thread concedes its ownership of the waiter’s main
stack (line 98) before notifying the waiter (line 72). There-
fore, our approach ensures that when a waiter reacquires
the ownership of its main stack (line 28), the combiner is not
using that stack.
3.4 Blocking Lock: TCLock

B

TCLockB follows a similar design philosophy of the blocking
ShflLock, where waiters use the spin-then-park strategy.
In this approach, a waiter spins locally until its time quota
expires. Upon expiration, it schedules itself out if the system
is oversubscribed; otherwise, it yields to the scheduler, which
eventually reschedules the waiter. In addition, the lock queue
maintains both active and passive waiters.
We design TCLockB by augmenting TCLockSP to sup-

port the parking/wakeup policy. We extend the combiner’s
role, which now wakes up sleeping waiters while execut-
ing their critical sections. The use of an ephemeral stack
becomes critical for TCLockB because parking of waiters
requires calling a function, which pushes the function frame
on the waiter’s stack. Hence, TCLockB uses the thread-local
ephemeral stack to prevent concurrent accesses. The stack
switching protocol remains the same as in TCLockSP. To en-
able efficient parking and wakeup, we add two new states to
the request field of the qnode: PARKED, in which a waiter
is scheduled out, and PRCSING, which indicates that the
combiner has started executing a waiter’s critical section.

In the slow-path phase, while spinning locally (i.e., phase
1), a waiter t checks if its time quota is up. If so, t attempts
to park itself out. Specifically, t tries to change its request
field from UNPRCSD to PARKED atomically. If successful,
t parks itself out; otherwise, it continues spinning as the
combiner has changed t’s state. In phase 4c , while selecting
the next head of the queue (notify_next_queue_head()), the
combiner atomically swaps t’s state to PRCSING to prevent
the waiter from going to sleep. Furthermore, after executing
the critical section, the combiner atomically swaps t’s state
to PRCSD. In both cases, the combiner checks the old state
of the request field. If it is PARKED, the combiner wakes
up t. We use atomic instructions for changing the state to
prevent the lost wakeup problem.
3.5 Readers-writer Version: TCLock

RW

TCLockRW is a combining-aware readers-writer lock that
allows readers to execute in parallel, while writers are
combined. TCLock uses a phase-based mechanism [35,
36] that alternates between readers and combined writers.
TCLockRW comprises the following: 1) A counter that in-
cludes the reader count (RCNT), writer present byte (WP) to
indicate if a writer is holding the lock, and writer waiting

1 RCNT = 1 << 16; WW = 0x100; WP = 0x1;
2 WCOMBINER = G_LOCKED_COMBINER
3 class rwlock: (32 byte lock)
4 # rwcounter → [RCNT: 17-63; WW: 8-16; WP: 0-7]
5 rwcounter = 0 # 8-byte readers-writer rwcounter
6 tail = None # Writers enqueue in this queue
7 wlock: mutex # Coordinate bw readers & first writer
8
9 def down_read(rwlock): # Acquire read lock
10 atomic_inc(&rwlock.rwcounter, RCNT) # Increment reader count
11 if !(rwlock.rwcounter & 0xffff): # Check the first two bytes
12 return # Lock acquired, if writer not present or waiting
13 atomic_dec(&rwlock.rwcounter, RCNT) # Decrement reader count
14 read_lock_slowpath(rwlock) # execute read slowpath
15
16 def read_lock_slowpath(rwlock):
17 mutex_lock(&rwlock.wlock) # Acquire mutex
18 atomic_inc(&rwlock.rwcounter, RCNT) # Increment reader count
19 while (rwlock.rwcounter & 0xffff) > 0: # Check first two bytes
20 continue # Wait for writer to finish
21 mutex_unlock(&rwlock.wlock) # Release the mutex
22
23 def up_read(rwlock): # Release read lock
24 atomic_dec(&rwlock.rwcounter, RCNT) # Decrease reader count
25
26 def down_write(rwlock): # Acquire write lock
27 # The writer tries to set the WP byte (as 1)
28 if CAS(&rwlock.rwcounter, 0, WP) == 0:
29 return # Writer fastpath
30
31 # Switch to the ephemeral stack and acquire lock in slowpath.
32 cst = this_cpu_comb_struct() # Get the per-CPU comb struct
33 switch_stack(rwlock, cst)
34 return
35 def lock_slowpath(lock, cst): # Write lock slowpath
36 ...
37 - # Waiter → queue's head; get the TAS lock
38 - while True: # Wait for the glock to be unlocked
39 - while lock.glock != G_UNLOCK:
40 - continue
41 - if CAS(&lock.glock, G_UNLOCK, G_LOCKED) == G_UNLOCK:
42 - break # Got the TAS lock
43
44 + # Replace spinning on glock with rwcounter
45 + mutex_lock(&lock.wlock) # Acquire mutex
46 + if CAS(&lock.rwcounter, 0, WP) == 0:
47 + goto unlock # Success if no readers are present.
48
49 + atomic_inc(&lock.rwcounter, WW) # Indicate writer waiting
50 + while True: # Spin until all readers finish CS
51 + if CAS(&lock.rwcounter, WW, WP) == WW:
52 + break
53 + unlock:
54 + mutex_unlock(&lock.wlock) # Release mutex
55 # MCS unlock phase
56 ...
57
58 - # Now, qnext is the combiner, indicated by glock word
59 - lock.glock = G_LOCKED_COMBINER
60 + # Now, qnext is the combiner, indicated by rwcounter word
61 + lock.rwcounter = WCOMBINER
62
63 - # Combiner phase is over, now combiner will run its CS
64 - lock.glock = G_LOCKED # Reset TAS lock to normal lock
65 + lock.rwcounter = WP
66
67 def up_writer(rwlock): # Release write lock
68 + if rwlock.rwcounter == WP:
69 rwlock.rwcounter = 0
70 ...

Listing 2: Pseudo-code for TCLockRW .

byte (WW) indicating a writer waiting to acquire the lock. 2)
A writer queue (tail) for combining and parking waiting
writers. This queue is similar to our TCLockB’s queue. 3) A

mutex, called wlock, that synchronizes the phase between
readers and the head of the writers queue. Hence, wlock
handles the parking of readers and the head of the write
queue. We use the ShflLockB algorithm [52]—a traditional
NUMA-aware queue-based mutex—for wlock than TCLockB

because maintaining a centralized count of readers (shared
data) contradicts the design of combining that tries to localize
the access to the shared data.
Algorithm. Listing 2 shows the necessary changes to
TCLockSP. A reader first atomically increments RCNT and
executes its critical section if no writer is present (lines 10–
11). Otherwise, it decreases the RCNT (line 13), and enters the
slow-path phase. The reader first acquires wlock (line 17),
it then increments the RCNT (line 18) to mark that a reader
phase should begin soon, and waits for existing writers to
exit (line 20). Finally, it unlocks wlock (line 21) and executes
its critical section. In the unlock phase, a reader releases the
lock by atomically decreasing RCNT (line 24).
A writer enters the critical section if it successfully

switches WP from 0 to 1 (line 28). Otherwise, it switches to
the ephemeral stack and begins the slow path phase (line 33).
This slow path follows the same protocol as TCLockSP ex-
cept that the head of the waiting queue (line 44) acquires
the wlock (line 45). After acquiring wlock, the writer tries
to enter the critical section by atomically setting the value
to WP (line 46). On failure, it sets the WW byte to 1 to prevent
new readers from entering the critical section (line 49) and
waits for other readers to leave. Once they leave, the writer
atomically modifies the rwcounter from WW to WP (line 50–
52), releases wlock, and starts the combining process. In the
unlock phase, a writer resets the rwcounter to 0 if the value
is WP.
3.6 Optimizations

We propose three key optimizations to minimize further the
data movement between the combiner and a waiter, and the
cache-line bouncing of the lock word.

3.6.1 Direct stack switching: waiter→ waiter

In the current TCLockSP version (§3.2), the combiner
switches stack twice before executing the next waiter’s criti-
cal section. Specifically, it first switches to its own context,
finds the next waiter to combine, and then switches to the
next waiter’s context. To avoid the switch to the combiner’s
context, we split the combining loop. In particular, after
switching the stack to a waiter’s context, the combiner tries
to select the next waiter to combine after the current waiter
(4a), and notifies the previous waiter that its critical section
execution is over (4c). The combiner then exits the lock
function call and executes the critical section of the current
waiter. After executing the critical section, i.e., in the un-
lock phase of the current waiter, the combiner checks the
combining loop conditions (4d). If the condition holds, the
combiner directly switches to the next waiter’s context (4b).

Otherwise, it marks the end of the combining phase, switches
back to its context, notifies the previous waiter, and finally
executes its own critical section.
3.6.2 Minimizing context switch overhead

Our combining approach suffers from saving, transferring,
and restoring a thread’s contexts while executing the critical
section. We leverage both compiler and hardware techniques
to minimize extra latency incurred inside the critical section.
Leveraging function’s caller-callee convention. Our
basic context-switch algorithm saves, transfers, and restores
all CPU-specific registers. We minimize this overhead by
leveraging the function calling convention. Specifically, we
explicitly make the slow-path of lock acquisition as a func-
tion to prevent compiler inlining. This has two benefits: First,
this phase is triggered only in the case of contention, as in the
uncontended case, the thread acquires the TAS lock. This ap-
proach is similar to the Linux spinlock implementation [41].
Second, we leverage the function calling convention. In par-
ticular, we save, transfer, and restore only the callee-saved
registers, while the compiler saves and restores the necessary
caller-saved registers [3]. The compiler, using its register
liveness information, knows exactly which caller-saved reg-
isters are in use when the slow-path function is called, and
spills only those registers to the stack. Moreover, the number
of callee-saved registers is small [1, 8, 10]. For example, with
x86_64, there are only six callee-saved registers compared
with 16 general-purpose registers. Thus, the combiner only
transfers at most one cache line to encapsulate any critical
section of arbitrary length.
Prefetching thread-local data. Accessing thread-local
data within the critical section requires moving the waiter’s
specific code and data residing on its CPU to the combiner’s
CPU. Unfortunately, this movement extends the length of
the critical section. We find that most of the local data resides
on the stack due to aggressive compiler optimizations that a
thread either accesses ormodifies in the critical section. Thus,
we prefetch contiguous cache lines from the top of the stack2
to minimize the critical section latency. The combiner issues
the prefetch requests before executing the current waiter’s
critical section. Traditional lock designs cannot adopt this
approach because, unlike the combining approach, the lock
holder already has access to its local data. Meanwhile, shared
data cache lines are always going tomove to the CPU holding
the lock, and their movement is only possible at the end of
the critical section.
3.6.3 NUMA awareness

Similar to ShflLock, TCLock can adopt different policies
to choose the next waiter (select_next_waiter() in §3.2).
TCLock currently employs a NUMA-aware policy that min-
imizes cache-line bouncing among NUMA nodes. In particu-
lar, the combiner only executes critical sections of waiters

2We prefetch data in the write mode using the prefetchw instruction.

belonging to the same NUMA node. Upon reaching the
combining limit, the combiner passes the role to a waiter re-
siding on another NUMA node. TCLock adopts the dynamic
queue-splitting approach from the CNA algorithm. Specif-
ically, TCLock maintains a combiner-local waiting queue
for remote NUMA node waiters and uses the primary queue
for local NUMA node waiters. Initially, all waiters join the
primary queue (same as before), and the selection of the next
waiter happens as follows: The combiner tries to find the
next waiter from the same socket. If it succeeds, it executes
that waiter’s critical section; otherwise, it adds the remote
waiter’s node to its local queue. While passing the role, the
combiner first enqueues the local queue waiters at the begin-
ning of the primary queue and then passes the combining
role to the primary queue head.

4 TCLocks with Real-World Applications

Although TCLocks offer a compelling case to minimize over-
all shared data movement, applying them to real-world ap-
plications introduces two major challenges. The first chal-
lenge involves fine-grained locking, which requires support
for multi-level locking [4, 20, 28] and out-of-order unlock-
ing [12, 13]. The second challenge stems within the OS
kernel, such as Linux, in which locks can be acquired within
special execution contexts, which guarantees stability about
per-CPU variables while executing within these contexts.
We now discuss our approaches to overcoming these chal-
lenges in the context of the Linux kernel.
4.1 Multi-level Locking

Multi-level locking leads to two notable usage patterns that
require additional effort to design and implement correctly
in the context of combining. First, a combiner thread can
be a waiter while executing a nested lock (henceforth called
waiter-combiner). Second, locks can be released in arbitrary
order leading to out-of-order unlocking. Although out-of-
order unlocking does not affect traditional locks, TCLock
requires extra care in handling such cases, as it can lead to
data corruption as well as deadlocks. We now present our
approach to supporting these usage patterns.
Nested combining. For handling nested combining,
TCLock adopts the same interrupt processing mechanism
by OSes. Interrupt handlers, before processing the interrupt,
push the current thread state on the stack. When the inter-
rupt handler finishes, it restores the thread’s state from the
stack. This allows for handling nested interrupts without
affecting the execution of the interrupted thread. There are
three cases that occur when TCLocks interplay in the con-
text of nested locking: First is the case of nested locks when
both locks are in their combining phase. The second one is
when the outer level lock is a combiner and the inner one is
the fast-path TAS lock. Finally, the third case is the opposite
of the second scenario.
Listing 3 shows the changes required to implement the

first case, which works similar to the interrupt processing

1 + G_UNLOCKED_OOO = 4
2 # Extra state to handle out-of-order unlocking
3
4 def switch_stack(lock, cst):
5 switch_to_ephemeral_stack(cst.node) # Main → ephemeral
6 - lock_slowpath(lock, cst)
7 + ret_val = lock_slowpath(lock, cst)
8 + if ret_val == G_UNLOCKED_OOO: # Only for nested combiner
9 + switch_to_combiner_previous_stack_frame()
10 + else:
11 + switch_from_ephemeral_stack(cst.node) # Ephemeral→main
12
13 def lock_slowpath(lock, cst):
14 ...
15 if qprev is not None: # Waiters are in the queue
16 ...
17 if qnode.request == PRCSD : # Waiter rqst is processed
18 + if lock.glock == G_UNLOCKED_OOO: # OOO unlock
19 + return G_UNLOCKED_OOO
20 return 0 # Combiner executed my CS
21 ...
22
23 # For handling nested combining
24 + save_on_curr_stack_frame(lock.glock, cst.qcurr, qnode.rsp)
25
26 lock.glock = G_LOCKED_COMBINER
27 + j = find_first_empty_index(cst.lock_addr)
28 + cst.lock_addr[j] = lock # Record the current lock address
29 # Combiner loop ...
30 # Combiner phase is over, now combiner will run its CS
31 + cst.lock_addr[j] = None # Remove the current lock address
32
33 # For handling nested combining
34 + restore_from_curr_stack_frame(lock.glock,
35 + cst.qcurr, qnode.rsp)
36 notify_next_queue_head(qnext) # Next waiter is the combiner
37
38 def spin_unlock(lock):
39 if lock.glock == G_LOCKED:
40 lock.glock = G_UNLOCK # Only true for no combining phase
41 return
42 + max_idx = find_last_not_empty_index(cst.lock_addr)
43 + my_idx = find_my_lock_index(cst.lock_addr, lock)
44 + if my_idx < max_idx : # Acquire order != release order
45 + lock.glock = G_UNLOCKED_OOO
46 + return
47 # Jump back to combiner
48 cst = this_cpu_komb_struct()
49 # Waiter's stack → combiner's ephemeral stack
50 switch_stack_from_waiter_to_combiner(cst.qcurr, cst)
51 return

Listing 3: Out-of-order (OOO) unlocking protocol.

approach. Specifically, a combiner may acquire a nested lock
inside the critical section. Before acquiring that lock, the
combiner pushes its state onto its ephemeral stack (line 24),
which it restores after releasing that nested lock (line 35).
This allows TCLocks to handle arbitrary levels of nesting
without violating application correctness.

TCLocks also supports the last two scenarios, in which
one of the locks is in the combining phase. We do not require
any additional support for these cases because each lock is
independent and the underlying lock mechanism doesn’t
interact with each other, which is exactly the same in the
traditional lock design. Specifically, every lock has its own
lock word and its underlying lock mechanism only interacts
with its own lock word. Thus, acquiring the lock in the fast-
path (TAS lock), does not interact with the lock which is held
by the combiner thread.

Out-of-order (OOO) unlocking. The algorithms discussed
thus far for TCLocks incorrectly handle OOO unlocking,
leading to wrong program execution. We illustrate this
through an example: Suppose multiple threads acquire LA

and then LB, which leads to contention. As a result, the com-
bining phase becomes active, and CA and CB hold locks LA and
LB, respectively. CA becomes a waiter-combiner when it tries
to acquire lock LB. Now, if LA is released before LB—unlocked
OOO—the combiner CB will return to its own combining loop,
as the unlock function does not track of the order of unlocked
locks. Therefore, the combiner CB breaks application seman-
tics by starting to execute the next waiter’s critical section,
while the lock LB which it holds is not unlocked yet.

To handle OOO unlocking, we rely on a simple insight: we
can release a lock at a later point in time without affecting
the correctness of the application. Specifically, we do not
release LA; we only release it once LB has been released. This
approach is similar to the handling of nested transactions, in
which we effectively flatten the out-of-order lock hierarchy
and release all the locks at the same time.

Listing 3 shows the changes required to TCLocks for han-
dling OOO unlocking. We make three specific changes in
the lock and unlock function of TCLocks:

• To identify OOO unlocks, we maintain a per-thread
lock_addr array to record the acquisition order of locks.
Before starting the combining loop, a combiner stores
its lock’s address in the lock_addr array (line 28), and
removes it once the combiner loop finishes (line 31).

• In the unlock function, the combiner checks if the lock
that is being unlocked is the last entry in the lock_addr
array. This is because the last entry in the lock_addr
array is the lock holding which the current combiner
is executing the critical section. We have two cases
now: The first one is the non-OOO case (line 47): The
combiner follows the original algorithm and returns to
the combiner’s ephemeral stack (line 50) and contin-
ues with its combiner loop. While the second one is an
OOO case (line 44): We simply mark the lock as OOO-
unlocked (line 45) and let the current combiner continue
executing until the unlock function for its lock is called.
The waiter-combiner for the OOO-unlocked lock waits
for the notification from the current combiner which
doesn’t happen until the current combiner reaches its
combiner loop. Therefore, delayed notification effec-
tively flattens the lock hierarchy for out-of-order un-
locked locks as the waiter-combiner cannot progress
until it gets the notification.

• After receiving the notification, the waiter-combiner
checks if its lock is unlocked OOO (line 18) and if true,
it return G_UNLOCKED_OOO (line 19). The combiner
switches to its previous state (line 9) which was saved
when the nested lock was called (line 5). The combiner
returns to its combiner loop (line 29), notifies the current
waiter and continues combining the next waiter.

The waiter for the outermost lock will get the control back
once the outermost lock and all the nested locks are released.
The waiter then starts executing its non-critical section.
4.2 Special Execution Contexts and Per-CPU Vari-

ables

Delegation via transparent combining breaks assumptions
of Linux kernel code about the stability of access to per-CPU
variables under special execution contexts. This includes in-
terrupt handlers, non-preemptible contexts, non-migratable
contexts, etc. This raises a critical question for our design:
How do we enable delegation-style locking transparently in
the kernel without compromising on correctness?

A potential solution involves the combiner accessing the
per-CPU variables of the waiter’s CPU while executing the
critical section. For example, on x86, we can save and restore
the gs registers that allows access to per-CPU variables of the
waiter’s CPU [14]. Unfortunately, this approach leads to data
races when waiters are busy-waiting, as interrupts on the
waiter’s CPU may still access per-CPU variables. Moreover,
this approach further leads to additional overhead of access-
ing per-CPU data of a remote CPU. Besides that, it requires
annotating parts of the kernel code that access per-CPU
variables for functional correctness, such as scheduler [22],
RCU [18], and many more during the combining phase. As
a result, these challenges make it very difficult to enable
transparent combining in special execution contexts within
the kernel.

We adopt a more conservative approach of disabling com-
bining for such execution contexts and falling back to default
kernel locking (currently qspinlock [41]). We leverage the
property that any part of a critical section requiring stable
access to per-CPU variables ensures appropriate protection
against CPU migration for that region of code. For example,
the Linux kernel’s spinlock_t APIs do not guarantee stable
access to per-CPU variables, as they do not disable preemp-
tion for the critical section. This is because the spinlock_t
type is transparently replaced with a mutex on real time ker-
nels [19]. Hence, the scheduler is allowed to preempt threads
and migrate them to a different CPU when they are holding
such a lock. To ensure that preemption is disabled within
the critical section regardless of the kernel configuration,
developers use specific raw_spinlock_t APIs [17].
When invoking the TCLock APIs, we only enable com-

bining for threads that can migrate from one CPU to another.
Otherwise, we disable combining and fallback to the existing
traditional lock. We identify these code regions by lever-
aging well-defined APIs of the Linux kernel. In particular,
we enable combining for the following cases: 1) the kernel
thread executes in the task context [27]; 2) it does not disable
migration or preemption [9, 16], and 3) it does not execute in
a context where HardIRQs and SoftIRQs are disabled [5, 24].
It is safe to execute traditional and combining queue-based
lock because mechanism for both types of locks are inde-

pendent and only one of them will be active for a particular
instance of lock at any given point.

5 Implementation

We implement TCLocks in the Linux kernel v5.14.19 and
replace all spinlock, mutex, and rwsem. We add 1349, 955,
and 1652 LoC for spinlock, mutex, and readers-writer lock
(rwsem), respectively. For userspace applications, we use
LiTL [50] library. It uses the LD_PRELOADmechanism to inter-
pose different POSIX locks used by userspace applications.
We implement TCLock for the x86 architecture, but it is

easily extensible to other architectures as well. x86-64 has six
callee-saved registers: rbx, rbp, and r12–r15. We push these
registers on the stack along with the stack pointer on the
waiter’s qnode. When the combiner switches to the waiter’s
main stack, it uses the stored stack pointer and pops the
callee-saved registers from the stack. We mark the stack-
switch function as noinline and noipa to prevent any compiler
optimizations and function inlining. Our code is publicly
available here: https://github.com/rs3lab/TCLocks.

6 Evaluation

We evaluate TCLocks by answering the following questions:
Q1. How does the kernel-based TCLock implementation

impact micro-benchmarks (§6.1) and real applications
(§6.2)?

Q2. How does each design decision affect TCLocks’ perfor-
mance (§6.3)?

Q3. How does the userspace TCLock implementation im-
pact an application’s performance (§6.4)?

Evaluation setup. We use micro-benchmarks that mostly
stress a lock and application benchmarks that stresses var-
ious kernel subsystems. In addition, we use a hash-table
nano-benchmark [69] to show the effectiveness of TCLock
design decisions. We evaluate on an 8-socket, 224-core Intel
machine with hyper-threading disabled. We use tmpfs in all
experiments to minimize the file system overhead. We eval-
uate three traditional locks within the Linux kernel: Linux’s
stock locks, CNA, and ShflLock. CNA replaces the stock
qspinlock, while we replace all locks with ShflLock.
6.1 TCLock Performance Comparison

We evaluate TCLocks using a set of micro-benchmarks [31,
62]. Each micro-benchmark instantiates a set of threads
and pins them to cores. These threads mostly contend on a
single lock (sometimes two) while performing specific tasks
(Table 1) for 30 seconds.
Spinning TCLock. Figure 3 ((a) and (b)) show that
TCLockSP outperforms the Linux version (Stock) by 3.7×
and 4.4× on MRDM and lock1, respectively. TCLock per-
forms similarly to Stock from two to eight cores for two
reasons. First, the stack switching adds an average of 47 ns
latency. Second, the combiner is unable to perform effec-
tively at such a low core count. As a result, TCLock does
not reach its potential. On the other hand, the benefit of

Lock type Workload Lock: Usage

Spinlock MRDM [62] rename seqlock: Rename files within a directory
lock1 [31] files_struct.file_lock: fd allocation / fcntl

Blocking MWRM [62] sb->s_vfs_rename_mutex: Rename a file across directory
dentry->d_lock: Dentry lock

RW Blocking mmap1 [31] mm_struct->mmap_lock: Memory map file within a directory

Table 1: Lock usage in various micro-benchmarks [31, 62].

TCLockSP is evident after eight cores where the gains from
localizing shared data cache lines outweighs the overhead of
stack-switch. TCLockSP combiner on average batches 950
waiter’s request. Thus, even within a socket (up to 28 cores),
TCLockSP maintains consistent throughput.

Compared to NUMA-aware locks, TCLockSP outperforms
ShflLock and CNA by 2-3× across sockets. The combining-
based NUMA-aware policy of TCLockSP minimizes the
cache-line bouncing of both the lock word and the shared
data. On average, 190K combiners execute during a 30-
second run where every TCLockSP combiner batches ∼980
waiter’s request before passing the lock to different NUMA
socket. In essence, every combiner is reducing extra coher-
ence traffic for accessing shared data within the waiter’s
critical section, which would be generated in a traditional
lock design.
Blocking TCLock. We compare TCLockB with Linux
mutex and ShflLock. Figure 3 (c) shows that TCLockB is
1.8× faster than both mutex and the blocking version of
ShflLock. Both Stock and ShflLock suffer from shared data
movement at a high core count. In addition, ShflLock’s
performance degrades similarly to that of Stock due to its
lock stealing, which renders its NUMA-policy ineffective.
Whereas, TCLockB retains performance because it reduces
cache-line bouncing for both the lock word and shared data.
Readers-Writer Blocking TCLock. Figure 3 (d) shows
the impact of TCLock when stressing the writer side of
rwsem. We use the mmap1 benchmark [31], which populates
and deletes VMAs within an address space. TCLock main-
tains the best throughput irrespective of contention after
eight cores. Within a socket, TCLockRW outperforms Stock
by 1.7×, as a combiner combines ∼1000 waiter’s request,
thereby minimizing cache-line movement of shared data
cache lines. Moreover, across the socket, TCLockRW com-
biner batches similar number of waiter’s request resulting in
3.1× and 1.5× better throughput than Stock and ShflLock.
6.2 Application-level Benchmarks

We evaluate two applications that extensively stress various
subsystems of the Linux kernel. Figure 4 reports applications’
throughput. The kernel subsystem uses a mix of blocking
locks and spinlocks, which are present in several data struc-
tures such as inodes, task structures, and memory mappings.
Psearchy is a parallel version of searchy that does text index-
ing. It is mmap intensive, which stresses the memory subsys-
tem with multiple userspace threads. It does around 96,000

https://github.com/rs3lab/TCLocks

0
1
2
3
4
5
6
7
8

1 2 4 8 16 32 64 12
8

25
6

0

5

10

15

20

1 2 4 8 16 32 64 12
8

25
6

0.0

0.1

0.2

0.3

0.4

1 2 4 8 16 32 64 12
8

25
6

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

1 2 4 8 16 32 64 12
8

25
6

M
O
ps
/s
ec

of threads

Stock
(a) FxMark - MRDM (Spinlock)

of threads

CNA
(b) will-it-scale: lock1 (Spinlock)

of threads

ShflLock
(c) FxMark - MWRM (Spinlock/Mutex)

of threads

TCLock
(d) will-it-scale: mmap1 (RWSem)

Figure 3: Impact of spinlock, blocking locks and read-write semaphore on the scalability of micro-benchmarks [31, 62].

0
150
300
450
600
750
900

28 56 84 11
2

14
0

16
8

19
6

22
4

0

150

300

450

600

750

28 56 84 11
2

14
0

16
8

19
6

22
4

Jo
bs
/h
ou

r

of threads

Stock ShflLock
(a) Psearchy

of threads

CNA TCLocks
(b) Metis

Figure 4: Impact of kernel locks on application scalability.

small and large mmap/munmap operations from 96,000 files
with multiple threads. It stresses the writer side of the rwsem
in the memory subsystem and inode allocation in the file
system layer. Figure 4 (a) shows that TCLock outperforms
existing locks up to 2.2×. Because of its effective combining
strategy, TCLockRW is able to localize access to shared data.
We find that ShflLock and Stock have similar performance
as they inefficiently use up hardware bandwidth. Moreover,
we observe that psearchy’s performance drops with increas-
ing core count, which happens due to the contention in the
file stream glibc library.
Metis is an in-memory map-reduce framework, represent-
ing a page-fault-intensive workload that stresses the readers’
side of the mmap_sem (rwsem) in the Linux kernel. Figure 4 (b)
shows that TCLock outperforms both ShflLock and Stock
by 1.3×. The reason is due to the phase-based design of
TCLockRW , which improves the performance by batching
the writers in one phase, meanwhile executing readers in
parallel in the next phase. Across sockets, it improves perfor-
mance compared to ShflLock and Stock by 1.7× and 1.4×
at 140 cores, respectively.
6.3 Nano benchmark: RCUHT

We now do an in-depth analysis of TCLocks using a hash-
table benchmark in the kernel [69]. A global lock guards
the hash table. For TCLockSP and TCLockB, we generate
100% writes, whereas for TCLockRW (readers-writer block-
ing lock), we generate 1% and 20% writes on the hash ta-
ble. Figure 5 presents the results and the factor analysis of
TCLocks.
Spinning TCLock. Figure 5 (a) and (b) shows the through-
put and 99.99% latency of spinlocks, respectively. (a) We
find that TCLockSP maintains similar performance within
and across sockets because of the effective combining pol-

icy. In particular, the combining batches up to 50,000 waiter
requests, thereby localizing the requests for that many invo-
cations. In addition, the average and 99%ile latency of the
critical section is 188 ns and 474 ns at 28 cores, respectively,
whereas both stock and ShflLock have up to 2.5× and 2.1×
higher average and 99%ile latency, respectively.
In the case of NUMA, TCLockSP outperforms ShflLock

and Stock by up to 9.4×. The improvement occurs because of
minimizing cache-line bouncing and Localizing shared data,
which reduces the time spent in critical section. For example,
at 168 cores, the average latency of TCLock is 213ns, which
is similar to average latency at 28 cores. Whereas ShflLock
and Stock have 10.5× and 11× higher latency, respectively.
The 99%ile latency increases to 1516 ns for TCLock. This
happens because of NUMA-aware moving of the shared data,
which increases the 99.9% latency of TCLock. However, this
latency is still 3× lower than that of ShflLock.

Figure 5 (b) shows the combined latency for the lock func-
tion, critical section execution, and the unlock function.
TCLockSP, even with batching 50,000 waiters, has up to 5.6×
and 4.4× lower latency compared to ShflLock and Stock,
respectively. This is because of lower critical section latency,
which reduces the overall latency of the whole system as the
critical sections are executed sequentially.
Nested Locking and OOO unlocking. We evaluate
the impact of our OOO unlocking with a hash-table nano-
benchmark that acquires nested lock and can release locks
in an OOO manner. Specifically, every bucket has a lock
and nested locks are acquired when moving an entry from
one bucket to another. Figure 5 (c) shows that, within a
socket, TCLockSP performs similar to other locks. At 28
cores, TCLockSP is 5% slower than Stock. This is because the
overhead of saving/restoring the combiner state with nested
lock along with delaying the unlock degrades TCLockSP

performance within a socket. Across socket, TCLockSP out-
performs Stock by up to 3.7×. The performance gains with
localization of shared cache lines outweighs the overhead of
TCLockSP implementation of nested locking.
Blocking TCLock. Figure 5 (d) shows the throughput with
blocking locks. TCLockB outperforms stock in both under-
subscribed and over-subscribed scenarios. With the help of
its efficient spin-then-park strategy, TCLockB outperforms
Stock by up to 9.5× in under-subscribed scenarios. More-

0
1
2
3
4
5
6
7
8

1 2 4 8 16 32 64 12
8

25
6

0.0
0.2
0.4
0.6
0.8
1.0
1.2

28 56 84 11
2

14
0

16
8

19
6

22
4

0
1
2
3
4
5
6
7
8
9

1 2 4 8 16 32 64 12
8

25
6

0
2
4
6
8
10
12
14

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

0
2
4
6
8
10
12

1 2 4 8 16 32 64 12
8

25
6

0
1
2
3
4
5
6
7
8

1 2 4 8 16 32 64 12
8

25
6

0
1
2
3
4
5
6
7
8

1 2 4 8 16 32 64 12
8

25
6

4

5

6

7

8

8 16 32 64 12
8

25
6

1
2
3
4
5
6
7

8 16 32 64 12
8

25
6

M
O
ps
/s
ec

(a) Spinlock

Ti
m
e
(m

s)

Stock ShflLock TCLock CNA

(b) 99.99% latency of lock+CS+unlock

M
O
ps
/s
ec

(c) OOO unlocking

M
O
ps
/s
ec

(d) Mutex

M
O
ps
/s
ec

(e) RWSem (1% writes)

M
O
ps
/s
ec

(f) RWSem (20% writes)

M
O
ps
/s
ec

of threads
Stock
Base

+NUMA
+Pref

+WWJump

(g) Effect of Optimization

M
O
ps
/s
ec

of threads
2 Cache Lines
4 Cache Lines

6 Cache Lines
8 Cache Lines

(h) Prefetching (X) stack cache lines (CL)

M
O
ps
/s
ec

of threads
210

212
214

216

(i) Batch Size (pow(2,X))

Figure 5: (a – f) Impact of spinning, blocking and read-write lock on the hash-table nano benchmark with an eight-socket Intel machine.
(b) Latency of executing lock function+CS+unlock function with different spinlocks. (c) Performance with nested locking and OOO
unlocking. (g) Impact of different optimization introduced in TCLockSP. On top of baseline, we add NUMA-awareness, stack prefetching,
and waiter-to-waiter jump. (h – i) Impact of prefetching and batch size on TCLockSP’s performance.

0
0.5

1
1.5

2
2.5

3
3.5

1 2 4 8 16 32 64 12
8

25
6

0
0.5

1
1.5

2
2.5

3

1 2 4 8 16 32 64

O
ps
/u
se
c

of threads

Stock CNA
(a) LevelDB (8-socket machine)

of threads

ShflLock TCLock
(b) LevelDB (2-socket machine)

Figure 6: Impact of locks on userspace applications.

over, TCLockB maintains the same performance even after
crossing the socket boundary. Although latency to wake up
a waiter on a remote socket costs more than that of the local
socket, TCLockB’s usage of NUMA-aware design amortizes
the overhead of waking up waiters from other socket.
Reader-writer TCLock. Figure 5 ((e) and (f)) show that the
TCLockRW has higher throughput than the stock version by
6.8× and 2.2× for 1% and 20% writes, respectively. ShflLock
and TCLockRW use similar design for readers. Because of
using the phase-based design, TCLockRW is able to improve
performance by up to 1.28× and 1.37× at 1% and 20% writes,
respectively. We further observe that combining is not effec-
tive with centralized readers counting, as the readers counter
cache line is always moving across cores.
TCLocks optimizations. Figure 5 (g) shows the effect of

different optimizations used by TCLock. TCLockSP without
any optimizations outperforms Stock by 2.2× because it
localizes the shared data access. The overhead of stack switch
is apparent at lower core count because jumping to a waiter’s
critical section requires access to the stack which needs to be
fetched from a waiter’s core. On adding NUMA-awareness to
the current design, we improve the performance by 2.6×, as
we now prevent moving the waiter’s stack cache line across
sockets. It also helps within a socket because checking the
socket ID of the next waiter’s node fetches the next waiter’s
node in the combiner’s cache. As a result, this simple check
reduces the time spent in the combiner loop.
In addition, our stack prefetching approach, on top of

NUMA-awareness policy, further improves performance by
1.3×, as it reduces the time spent in starting the execu-
tion of critical section. Finally, our waiter → waiter jump
(WWJump) further improves the throughput by 1.2× as it
reduces the overhead of stack switch (∼50 ns) from two
switches to one. Overall, our optimizations reduce the over-
head of stack switching and improve performance compared
to the baseline by 4×.
TCLocks sensitivity. Figure 5 ((h)–(i)) shows the impact of
changing the number of prefetched cache lines and the num-
ber of waiter’s combined. Figure 5 (h) shows that prefetching
up to six cache lines provides the best performance for this

benchmark. It depends entirely on what is accessed inside
the critical section. We can write a compiler pass to tune
this parameter, as the compiler has the information on what
is accessed within the critical section. Figure 5 (i) shows the
impact of batching. Higher batch count improves throughput
at the expense of short-term fairness, but TCLocks main-
tain long-term fairness. Batching is also able to reduce the
latency for all requests, if it can reduce the time spent per
request as shown in Figure 5(e).
6.4 Performance With Userspace TCLock

We evaluate TCLocks on the LevelDB benchmark [49]. We
integrate both TCLock, CNA and ShflLock into LiTL [50]
for evaluation. LevelDB is an open-source key-value
store [48]. We use the readrandom benchmark with 1M
key-value pairs, that contends on the global database lock.
Figure 6 (a) shows the performance with spinlocks on an
8-socket machine. Within a socket, TCLockSP improves
throughput compared to other locks by 1.9×–2.6×. Local-
izing shared data movement helps to achieve better per-
formance than traditional locks. Across sockets, NUMA-
awareness coupled with minimal shared data movement
helps TCLockSP outperform other locks by up to 5.2×. Fig-
ure 6 (b) shows the performance on a 2-socket machine.
TCLockSP performs similar to the 8-socket machine and im-
proves throughput compared to other locks by 2.1×–3.6×.

7 Discussion and Limitations

TCLocks implement transparent delegation, which enables
developers to use delegation-style locking without rewriting
the application. However, TCLocks have limitations both in
terms of algorithm design and kernel implementation. We
discuss them below.
Overhead at two–four cores. We observe overhead with
TCLocks when very few threads (two–four) contend for
a lock. Contending threads execute slowpath after stack-
switching, but combining is only enabled when more than
two waiters are present in the queue. Waiters pay the cost of
two stack-switching but their critical section is not executed
by the combiner. This can be solved by disabling combining
when we have less than four threads in the queue. The
challenge lies in efficiently identifying the size of the queue
without using extra memory or traversing the queue.
Resource accounting. The kernel requires accurate ac-
counting of resources like CPU usage, allocated memory,
etc. Kernel subsystems, such as the scheduler or cgroup,
are guided by the accounting of resources used by a par-
ticular thread. Delegation-based techniques can break this
accurate accounting for resources used within the critical
section. Thus, TCLocks complicate resource accounting.
Even though a combiner thread executes the critical section
on behalf of other waiter threads, resources like CPU time
or allocated memory in the critical section need to be ac-
counted to the waiter thread, for maintaining broader kernel

semantics. We leave this extension as future work.
TCLock vs ‘current’. Apart from per-CPU variables, Linux
also uses a macro named current, which resolves to a per-
CPU pointer variable to the currently executing thread’s task
structure. This pointer is used to access the task structure
for multiple purposes, including but not limited to resource
accounting with cgroups [21], permission checks using cre-
dentials [15], thread scheduling [26], etc. While executing
a waiter’s critical section on the combiner’s CPU, if this
pointer is not switched to the waiter’s task structure, then it
could lead to subtle bugs. For example, if a combiner thread
has higher privileges than the waiter thread, and the per-
mission checks are done within the critical section, it may
lead to privilege escalation bugs, since the combiner thread’s
credentials will be inspected.
One possible solution is to modify current macro’s im-

plementation to resolve to the waiter’s task structure while
executing waiter’s critical section on combiner CPU. Unfor-
tunately, this will also lead to bugs. For example, if a thread
sleeps within its critical section, the scheduler code uses
the current macro to put the running task to sleep. When
combining a waiter’s critical section, we want the combiner
thread to sleep. However, if we switch the current macro
to use the waiter’s task structure, it will lead to confusion
within the scheduler as the waiter task is already seen to be
running on another CPU.
We currently keep the current macro unchanged, and

suggest judicious use of the TCLock APIs in cases where a
different thread identity within the critical section may lead
to unexpected behavior.

8 Conclusion

Delegation based techniques are known to offer better scala-
bility and provide better performance for highly contended
scenarios, but prior work requires application changes to
enable delegation. In this paper, we propose a new tech-
nique called transparent delegation that makes delegation-
style locking practical. We design the first-ever transparent
delegation based locks, called TCLocks, for both userspace
applications and the Linux kernel. This is achieved by light-
weight context switching and using ephemeral stacks to
maintain consistency. Using transparent delegation, we de-
sign spinning, blocking and phase-based readers-writer locks.
We replace all the locks in the Linux kernel with TCLocks,
and discuss the technical challenges involved. Our evalua-
tion shows that TCLocks provide better performance and
scalability compared to traditional lock design.

9 Acknowledgment

We thank Changwoo Min for his comments on the initial
draft. We also thank Dave Dice, Alex Kogan, the anonymous
reviewers, and our shepherd, Geoffrey M. Voelker, for their
helpful feedback. This work is supported by the SNSF project
grant 212884.

References

[1] List of callee-saved registers. https://developer.arm.com/
documentation/102374/0100/Procedure-Call-Standard, .
[Accessed on 22/04/2023].

[2] List of arm registers. https://
developer.arm.com/documentation/dui0473/m/
overview-of-the-arm-architecture/arm-registers, .
[Accessed on 22/04/2023].

[3] Gcc calling convention. https://gcc.gnu.org/onlinedocs/gcc/
x86-Function-Attributes.html. [Accessed on 22/04/2023].

[4] Lock ordering for file mmap. https://elixir.bootlin.
com/linux/v6.1/source/mm/filemap.c#L72. [Accessed on
22/04/2023].

[5] Locking Between Hard IRQ and Softirqs/Tasklets: Unreliable
Guide To Locking — The Linux Kernel documentation. https://
www.kernel.org/doc/html/v4.13/kernel-hacking/locking.
html#locking-between-hard-irq-and-softirqs-tasklets, .
[Accessed on 30/04/2023].

[6] Hardirq. https://www.kernel.org/doc/htmldocs/
kernel-locking/hardirq-context.html, . [Accessed on
22/04/2023].

[7] Hardware interrupts (hard irqs). https://www.kernel.org/
doc/htmldocs/kernel-hacking/basics-hardirqs.html, . [Ac-
cessed on 22/04/2023].

[8] List of x86-64 registers. https://wiki.cdot.senecacollege.ca/
wiki/X86_64_Register_and_Instruction_Quick_Start. [Ac-
cessed on 22/04/2023].

[9] [PATCH 7/9] sched: Add migrate_disable(). https://lwn.net/ml/
linux-kernel/20200921163845.769861942@infradead.org/.
[Accessed on 30/04/2023].

[10] List of mips registers. https://en.wikibooks.org/wiki/MIPS_
Assembly/Register_File. [Accessed on 22/04/2023].

[11] Non-maskable interrupt. https://en.wikipedia.org/wiki/
Non-maskable_interrupt. [Accessed on 22/04/2023].

[12] Dentry cache spinlock unlocked out-of-order, . https://elixir.
bootlin.com/linux/v6.0/source/fs/dcache.c#L3022.

[13] Pipe mutex unlocked out-of-order, . https://elixir.bootlin.
com/linux/v6.0/source/fs/splice.c#L1552.

[14] Per-cpu variables. https://docs.kernel.org/core-api/this_
cpu_ops.html#inner-working-of-this-cpu-operations, .
[Accessed on 22/04/2023].

[15] Credentials in Linux. https://www.kernel.org/doc/
Documentation/security/credentials.txt, . [Accessed
on 30/04/2023].

[16] Proper Locking Under a Preemptible Kernel: Keeping Kernel Code
Preempt-Safe. https://www.kernel.org/doc/Documentation/
preempt-locking.txt. [Accessed on 30/04/2023].

[17] raw_spinlock_t: Lock types and their rules — The Linux Kernel doc-
umentation. https://docs.kernel.org/locking/locktypes.
html#raw-spinlock-t. [Accessed on 30/04/2023].

[18] What is RCU? – “Read, Copy, Update” — The Linux Kernel docu-
mentation. https://www.kernel.org/doc/html/latest/RCU/
whatisRCU.html. [Accessed on 30/04/2023].

[19] spinlock_t and PREEMPT-RT: Lock types and their rules — The Linux
Kernel documentation. https://docs.kernel.org/locking/
locktypes.html#spinlock-t-and-preempt-rt. [Accessed on
30/04/2023].

[20] Lock ordering for directory rename. https://docs.kernel.
org/filesystems/directory-locking.html. [Accessed on
22/04/2023].

[21] Control group v2. https://www.kernel.org/doc/

Documentation/cgroup-v2.txt. [Accessed on 30/04/2023].
[22] CFS Scheduler — The Linux Kernel documentation.

https://www.kernel.org/doc/html/next/scheduler/
sched-design-CFS.html#few-implementation-details.
[Accessed on 30/04/2023].

[23] Softirq. https://www.kernel.org/doc/htmldocs/
kernel-hacking/basics-softirqs.html, . [Accessed on
22/04/2023].

[24] Locking Between User Context and Softirqs: Unreliable Guide
To Locking — The Linux Kernel documentation. https://
www.kernel.org/doc/html/v4.13/kernel-hacking/locking.
html#locking-between-user-context-and-softirqs, .
[Accessed on 30/04/2023].

[25] Task context. https://www.kernel.org/doc/htmldocs/
kernel-hacking/basic-players.html#basics-usercontext.
[Accessed on 22/04/2023].

[26] CFS Scheduler — The Linux Kernel documentation.
https://www.kernel.org/doc/html/next/scheduler/
sched-design-CFS.html. [Accessed on 30/04/2023].

[27] User Context: Unreliable Guide To Hacking The Linux Kernel — The
Linux Kernel documentation. https://www.kernel.org/doc/
html/v4.16/kernel-hacking/hacking.html#user-context.
[Accessed on 30/04/2023].

[28] Lock ordering in memorymanagement subsystem. https://elixir.
bootlin.com/linux/v6.1/source/mm/rmap.c#L20. [Accessed
on 22/04/2023].

[29] Windows fibers. https://learn.microsoft.com/en-us/
windows/win32/procthread/fibers.

[30] T. E. Anderson. The performance of spin lock alternatives for shared-
memorymultiprocessors. IEEE Transactions on Parallel and Distributed
Systems, 1(1):6–16, 1990.

[31] A. Blanchard. will-it-scale. https://github.com/
antonblanchard/will-it-scale. [Accessed on 22/04/2023].

[32] D. P. Bovet and M. Cesati. Understanding the Linux Kernel: from I/O
ports to process management. " O’Reilly Media, Inc.", 2005.

[33] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F. Kaashoek,
R. Morris, and N. Zeldovich. An Analysis of Linux Scalability to Many
Cores. In Proceedings of the 9th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), pages 1–16, Vancouver,
Canada, Oct. 2010.

[34] S. Boyd-Wickizer, M. F. Kaashoek, R. Morris, and N. Zeldovich. Non-
scalable locks are dangerous. In Proceedings of the Linux Symposium,
Ottawa, Canada, July 2012.

[35] B. B. Brandenburg and J. H. Anderson. Reader-writer synchroniza-
tion for shared-memory multiprocessor real-time systems. In 2009
21st Euromicro Conference on Real-Time Systems, pages 184–193. IEEE,
2009.

[36] B. B. Brandenburg and J. H. Anderson. Spin-based reader-writer
synchronization for multiprocessor real-time systems. In Real Time
Systems, pages 184–193, 2011. doi: 10.1109/ECRTS.2009.14.

[37] I. Calciu, D. Dice, T. Harris, M. Herlihy, A. Kogan, V. Marathe, and
M. Moir. Message passing or shared memory: Evaluating the del-
egation abstraction for multicores. In International Conference on
Principles of Distributed Systems, pages 83–97. Springer, 2013.

[38] I. Calciu, D. Dice, Y. Lev, V. Luchangco, V. J. Marathe, and N. Shavit.
NUMA-aware Reader-writer Locks. In Proceedings of the 18th ACM
Symposium on Principles and Practice of Parallel Programming (PPOPP),
pages 157–166, Shenzhen, China, Feb. 2013.

[39] M. Chabbi, M. Fagan, and J. Mellor-Crummey. High Performance
Locks for Multi-level NUMA Systems. In Proceedings of the 20th ACM
Symposium on Principles and Practice of Parallel Programming (PPOPP),
San Francisco, CA, Feb. 2015.

https://developer.arm.com/documentation/102374/0100/Procedure-Call-Standard
https://developer.arm.com/documentation/102374/0100/Procedure-Call-Standard
https://developer.arm.com/documentation/dui0473/m/overview-of-the-arm-architecture/arm-registers
https://developer.arm.com/documentation/dui0473/m/overview-of-the-arm-architecture/arm-registers
https://developer.arm.com/documentation/dui0473/m/overview-of-the-arm-architecture/arm-registers
https://gcc.gnu.org/onlinedocs/gcc/x86-Function-Attributes.html
https://gcc.gnu.org/onlinedocs/gcc/x86-Function-Attributes.html
https://elixir.bootlin.com/linux/v6.1/source/mm/filemap.c#L72
https://elixir.bootlin.com/linux/v6.1/source/mm/filemap.c#L72
https://www.kernel.org/doc/html/v4.13/kernel-hacking/locking.html#locking-between-hard-irq-and-softirqs-tasklets
https://www.kernel.org/doc/html/v4.13/kernel-hacking/locking.html#locking-between-hard-irq-and-softirqs-tasklets
https://www.kernel.org/doc/html/v4.13/kernel-hacking/locking.html#locking-between-hard-irq-and-softirqs-tasklets
https://www.kernel.org/doc/htmldocs/kernel-locking/hardirq-context.html
https://www.kernel.org/doc/htmldocs/kernel-locking/hardirq-context.html
https://www.kernel.org/doc/htmldocs/kernel-hacking/basics-hardirqs.html
https://www.kernel.org/doc/htmldocs/kernel-hacking/basics-hardirqs.html
https://wiki.cdot.senecacollege.ca/wiki/X86_64_Register_and_Instruction_Quick_Start
https://wiki.cdot.senecacollege.ca/wiki/X86_64_Register_and_Instruction_Quick_Start
https://lwn.net/ml/linux-kernel/20200921163845.769861942@infradead.org/
https://lwn.net/ml/linux-kernel/20200921163845.769861942@infradead.org/
https://en.wikibooks.org/wiki/MIPS_Assembly/Register_File
https://en.wikibooks.org/wiki/MIPS_Assembly/Register_File
https://en.wikipedia.org/wiki/Non-maskable_interrupt
https://en.wikipedia.org/wiki/Non-maskable_interrupt
https://elixir.bootlin.com/linux/v6.0/source/fs/dcache.c#L3022
https://elixir.bootlin.com/linux/v6.0/source/fs/dcache.c#L3022
https://elixir.bootlin.com/linux/v6.0/source/fs/splice.c#L1552
https://elixir.bootlin.com/linux/v6.0/source/fs/splice.c#L1552
https://docs.kernel.org/core-api/this_cpu_ops.html#inner-working-of-this-cpu-operations
https://docs.kernel.org/core-api/this_cpu_ops.html#inner-working-of-this-cpu-operations
https://www.kernel.org/doc/Documentation/security/credentials.txt
https://www.kernel.org/doc/Documentation/security/credentials.txt
https://www.kernel.org/doc/Documentation/preempt-locking.txt
https://www.kernel.org/doc/Documentation/preempt-locking.txt
https://docs.kernel.org/locking/locktypes.html#raw-spinlock-t
https://docs.kernel.org/locking/locktypes.html#raw-spinlock-t
https://www.kernel.org/doc/html/latest/RCU/whatisRCU.html
https://www.kernel.org/doc/html/latest/RCU/whatisRCU.html
https://docs.kernel.org/locking/locktypes.html#spinlock-t-and-preempt-rt
https://docs.kernel.org/locking/locktypes.html#spinlock-t-and-preempt-rt
https://docs.kernel.org/filesystems/directory-locking.html
https://docs.kernel.org/filesystems/directory-locking.html
https://www.kernel.org/doc/Documentation/cgroup-v2.txt
https://www.kernel.org/doc/Documentation/cgroup-v2.txt
https://www.kernel.org/doc/html/next/scheduler/sched-design-CFS.html#few-implementation-details
https://www.kernel.org/doc/html/next/scheduler/sched-design-CFS.html#few-implementation-details
https://www.kernel.org/doc/htmldocs/kernel-hacking/basics-softirqs.html
https://www.kernel.org/doc/htmldocs/kernel-hacking/basics-softirqs.html
https://www.kernel.org/doc/html/v4.13/kernel-hacking/locking.html#locking-between-user-context-and-softirqs
https://www.kernel.org/doc/html/v4.13/kernel-hacking/locking.html#locking-between-user-context-and-softirqs
https://www.kernel.org/doc/html/v4.13/kernel-hacking/locking.html#locking-between-user-context-and-softirqs
https://www.kernel.org/doc/htmldocs/kernel-hacking/basic-players.html#basics-usercontext
https://www.kernel.org/doc/htmldocs/kernel-hacking/basic-players.html#basics-usercontext
https://www.kernel.org/doc/html/next/scheduler/sched-design-CFS.html
https://www.kernel.org/doc/html/next/scheduler/sched-design-CFS.html
https://www.kernel.org/doc/html/v4.16/kernel-hacking/hacking.html#user-context
https://www.kernel.org/doc/html/v4.16/kernel-hacking/hacking.html#user-context
https://elixir.bootlin.com/linux/v6.1/source/mm/rmap.c#L20
https://elixir.bootlin.com/linux/v6.1/source/mm/rmap.c#L20
https://learn.microsoft.com/en-us/windows/win32/procthread/fibers
https://learn.microsoft.com/en-us/windows/win32/procthread/fibers
https://github.com/antonblanchard/will-it-scale
https://github.com/antonblanchard/will-it-scale

[40] J. Corbet. Big reader locks, 2010. https://lwn.net/Articles/
378911/, [Accessed on 30/04/2023].

[41] J. Corbet. MCS locks and qspinlocks, 2014. https://lwn.net/
Articles/590243/, [Accessed on 30/04/2023].

[42] T. Craig. Building FIFO and priorityqueuing spin locks from atomic
swap. Technical report, Technical Report TR 93-02-02, Department of
Computer Science, University of Washington, 1993.

[43] D. Dice and A. Kogan. Compact NUMA-aware Locks. In Proceedings of
the Fourteenth EuroSys Conference 2019, EuroSys ’19, pages 12:1–12:15,
New York, NY, USA, 2019. ACM. ISBN 978-1-4503-6281-8.

[44] D. Dice and A. Kogan. Hemlock: Compact and scalable mutual ex-
clusion. In Proceedings of the 33rd ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA ’21, page 173–183, 2021.

[45] D. Dice, V. J. Marathe, and N. Shavit. Flat-combining NUMA Locks. In
Proceedings of the Twenty-third Annual ACM Symposium on Parallelism
in Algorithms and Architectures, SPAA ’11, pages 65–74, 2011.

[46] D. Dice, V. J. Marathe, and N. Shavit. Lock Cohorting: A General
Technique for Designing NUMA Locks. In Proceedings of the 17th
ACM Symposium on Principles and Practice of Parallel Programming
(PPOPP), pages 247–256, New Orleans, LA, Feb. 2012.

[47] P. Fatourou and N. D. Kallimanis. Revisiting the Combining Synchro-
nization Technique. In Proceedings of the 17th ACM Symposium on
Principles and Practice of Parallel Programming (PPOPP), pages 257–266,
New Orleans, LA, Feb. 2012.

[48] S. Ghemawat and J. Dean. LevelDB, 2019. URL https://github.
com/google/leveldb. [Accessed on 30/04/2023].

[49] R. Guerraoui, H. Guiroux, R. Lachaize, V. Quéma, and V. Trigonakis.
Lock—Unlock: Is That All? A Pragmatic Analysis of Locking in Soft-
ware Systems. ACM Trans. Comput. Syst., 36(1):1:1–1:149, Mar.
2019. doi: 10.1145/3301501. URL http://doi.acm.org/10.1145/
3301501.

[50] H. Guiroux, R. Lachaize, and V. Quéma. Multicore Locks: The Case is
Not Closed Yet. In Proceedings of the 2016 USENIX Annual Technical
Conference (ATC), pages 649–662, Denver, CO, June 2016.

[51] D. Hendler, I. Incze, N. Shavit, and M. Tzafrir. Flat combining and
the synchronization-parallelism tradeoff. In Proceedings of the twenty-
second annual ACM symposium on Parallelism in algorithms and archi-
tectures, pages 355–364, 2010.

[52] S. Kashyap, I. Calciu, X. Cheng, C. Min, and T. Kim. Scalable and
Practical Locking With Shuffling. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles (SOSP), Ontario, Canada,
Oct. 2019.

[53] X. Leroy. The open group base specifications issue 7, 2016. http://
pubs.opengroup.org/onlinepubs/9699919799/, [Accessed on
30/04/2023].

[54] Y. Lev, V. Luchangco, and M. Olszewski. Scalable reader-writer locks.
In Proceedings of the twenty-first annual symposium on Parallelism in
algorithms and architectures, pages 101–110, 2009.

[55] Linux. Lock ordering, 2013. URL https://elixir.bootlin.
com/linux/latest/source/mm/filemap.c#L66. [Accessed on
30/04/2023].

[56] J.-P. Lozi, F. David, G. Thomas, J. Lawall, and G. Muller. Fast and

Portable Locking for Multicore Architectures. ACM Trans. Comput.
Syst., 33(4):13:1–13:62, Jan. 2016.

[57] V. Luchangco, D. Nussbaum, and N. Shavit. A Hierarchical CLHQueue
Lock. In Proceedings of the 12th International Conference on Parallel
Processing, Euro-Par’06, pages 801–810, 2006.

[58] P. Magnusson, A. Landin, and E. Hagersten. Queue locks on cache
coherent multiprocessors. In Proceedings of 8th International Parallel
Processing Symposium, pages 165–171. IEEE, 1994.

[59] C. D. Marlin. Coroutines: a programming methodology, a language de-
sign and an implementation. Number 95. Springer Science & Business
Media, 1980.

[60] J. M. Mellor-Crummey and M. L. Scott. Algorithms for scalable
synchronization on shared-memory multiprocessors. pages 21–65,
Feb. 1991.

[61] J. M. Mellor-Crummey and M. L. Scott. Scalable Reader-writer Syn-
chronization for Shared-memory Multiprocessors. In Proceedings
of the Third ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPOPP ’91, pages 106–113, 1991.

[62] C. Min, S. Kashyap, S. Maass, W. Kang, and T. Kim. Understand-
ing Manycore Scalability of File Systems. In Proceedings of the 2016
USENIX Annual Technical Conference (ATC), Denver, CO, June 2016.

[63] O. Nesterov. Linux percpu-rwsem, 2012. http://lxr.
free-electrons.com/source/include/linux/percpu-rwsem.
h, [Accessed on 30/04/2023].

[64] Y. Oyama, K. Taura, and A. Yonezawa. Executing parallel programs
with synchronization bottlenecks efficiently. In Proceedings of Inter-
national Workshop on Parallel and Distributed Computing for Symbolic
and Irregular Applications (PDSIA), pages 182–204, jul 1999.

[65] S. Park, D. Zhou, Y. Qian, I. Calciu, T. Kim, and S. Kashyap. Application-
Informed Kernel Synchronization Primitives. In Proceedings of the 16th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI), Carlsbad, CA, July 2022.

[66] Z. Radovic and E. Hagersten. Hierarchical Backoff Locks for Nonuni-
form Communication Architectures. In Proceedings of the 9th Interna-
tional Symposium on High-Performance Computer Architecture, HPCA
’03, pages 241–252, Washington, DC, USA, 2003. IEEE Computer
Society. ISBN 0-7695-1871-0.

[67] S. Roghanchi, J. Eriksson, and N. Basu. Ffwd: Delegation is (much)
faster than you think. In Proceedings of the 26th Symposium on Oper-
ating Systems Principles, pages 342–358, 2017.

[68] M. L. Scott and W. N. Scherer. Scalable Queue-based Spin Locks with
Timeout. In Proceedings of the 6th ACM Symposium on Principles and
Practice of Parallel Programming (PPOPP), pages 44–52, Salt Lake City,
UT, Feb. 2001.

[69] J. Triplett, P. E. McKenney, and J. Walpole. Resizable, Scalable, Con-
current Hash Tables via Relativistic Programming. In Proceedings
of the 2011 USENIX Annual Technical Conference (ATC), pages 11–11,
Portland, OR, June 2011.

[70] A. Viro. parallel lookups, 2016. https://lwn.net/Articles/
684089/, [Accessed on 30/04/2023].

[71] P. Zijlstra. percpu rwsem -v2, 2010. https://lwn.net/Articles/
648914/, [Accessed on 30/04/2023].

https://lwn.net/Articles/378911/
https://lwn.net/Articles/378911/
https://lwn.net/Articles/590243/
https://lwn.net/Articles/590243/
https://github.com/google/leveldb
https://github.com/google/leveldb
http://doi.acm.org/10.1145/3301501
http://doi.acm.org/10.1145/3301501
http://pubs.opengroup.org/onlinepubs/9699919799/
http://pubs.opengroup.org/onlinepubs/9699919799/
https://elixir.bootlin.com/linux/latest/source/mm/filemap.c#L66
https://elixir.bootlin.com/linux/latest/source/mm/filemap.c#L66
http://lxr.free-electrons.com/source/include/linux/percpu-rwsem.h
http://lxr.free-electrons.com/source/include/linux/percpu-rwsem.h
http://lxr.free-electrons.com/source/include/linux/percpu-rwsem.h
https://lwn.net/Articles/684089/
https://lwn.net/Articles/684089/
https://lwn.net/Articles/648914/
https://lwn.net/Articles/648914/

	Introduction
	Background
	Traditional Locks
	Delegation-style Locks
	The Incompatibility of Delegation in Concurrent Applications

	TCLocks
	TCLock Design
	Spinlock: TCLockSP
	Proof Sketch of Correctness
	Blocking Lock: TCLockB
	Readers-writer Version: TCLockRW
	Optimizations
	Direct stack switching: waiter waiter
	Minimizing context switch overhead
	NUMA awareness

	TCLocks with Real-World Applications
	Multi-level Locking
	Special Execution Contexts and Per-CPU Variables

	Implementation
	Evaluation
	TCLock Performance Comparison
	Application-level Benchmarks
	Nano benchmark: RCUHT
	Performance With Userspace TCLock

	Discussion and Limitations
	Conclusion
	Acknowledgment

