
TENET: Memory Safe and Fault
Tolerant Persistent Transactional

Memory

R. Madhava Krishnan, Diyu Zhou, Wook-Hee Kim, Sudarsun Kannan,
Sanidhya Kashyap, Changwoo Min

1

Boon and bane of Non-volatile Memory (NVM)

2

Application

NVM Hardware

mmap region

 Load/store access

● Byte-addressability enables application to directly access NVM using load/store instructions

○ NVM is directly mapped to the application’s address space

NVM mapped directly to
the user space

Boon and bane of Non-volatile Memory (NVM)

3

Application

NVM Hardware

mmap region

 Load/store access

NVM mapped directly to
the user space

Memory safety bug
e.g., buffer overflow

Byte-addressability makes NVM data vulnerable to memory safety bugs in the application

Hardware (Media) errors are a threat too!

4

Application

NVM Hardware

mmap region

 Load/store accessNVM mapped directly to
the user space

● NVM data is vulnerable to Media Errors
○ Device wear-out, power spikes, soft media faults etc

Media errors corrupts the NVM data and
the entire NVM page (data) is lost

Research problem that we tackle..

5

How to detect memory safety bugs in the application and prevent it from corrupting
the NVM data?

How to prevent data loss due to the NVM media errors?

TENET

Talk Outline

● Background NVM memory safety errors

● TENET Overview

● TENET Design

● Evaluation

● Conclusion

6

Background on types of memory safety violations

7

Memory Safety
Violations 01 ● Spatial Safety Violations

● Temporal Safety Violations

buff (32 bytes)

memcpy(buff, src, 64)

Spatial Safety Violations Temporal Safety Violations

Spatial safety violations happens when applications
access the memory beyond the allocated range

buff

Ptr = buff

buff buff

use-after-realloc
use-after-free

(1) Alloc (2) Free (3) Realloc

buffer overflow

Temporal safety violations happens when applications
access the memory using dangling pointers

Background on types of Media Errors

8

NVM Media Errors 02 ● Correctable Media Errors
● Uncorrectable Media Errors

● NVM has high Random Bit Error Rate (RBER) ~= NAND flash

● Uncorrectable media errors (UME) are detected by the hardware ECC but can not be corrected

○ UME can happen at random offset and the OS kernel offlines the corrupted NVM page

○ Application is responsible for fixing the corrupted NVM page

Applications are required to maintain a backup of NVM data to rollback the
affected NVM page to prevent data loss

Summary of prior Persistent Transactional Memory (PTM) works

9

PTM Baseline
PTM*

Spatial
Safety

Temporal
Safety

Fault
Tolerance

Performance
Overhead

NVM Cost
Overhead

Libpmemobj-R libpmemobj 100% High

SafePM
[Eurosys-22]

libpmemobj 55%

Pangolin
[ATC-19]

libpmemobj 67% Moderate

Guaranteeing memory safety and fault tolerance at a lower performance overhead and
cost is a very challenging problem

*Performance overhead reported for hash table
*Pangolin’s overhead is directly referenced from the paper

Talk Outline

● Background NVM memory safety errors

● TENET Overview

● TENET Design

● Evaluation

● Conclusion

10

TENET overview: Goals and Assumptions

11

● Protect NVM data from a buggy application code

○ Guarantee spatial safety and temporal safety

● Protect NVM data against Uncorrectable Media Errors (UME)

○ Guarantee a performance and cost efficient fault tolerance

● Adversarial attacks are out-of-scope

● TENET library code and OS kernel are trusted (TCB)

TENET is a NVM programming framework to develop memory safe and fault
tolerant NVM data structures and applications

TENET overview: Programming Model

12

● TENET uses TimeStone persistent transactional memory (PTM)

● TimeStone is the state-of-the-art high-performing, highly scalable PTM

● TimeStone does not provide memory safety or fault tolerance

TENET provides persistent transaction programming model

Talk Outline

● Background NVM memory safety errors

● TENET Overview

● TENET Design

● Evaluation

● Conclusion

13

Spatial safety design in TENET

14

Application code or any code outside the TENET library is not allowed to
perform direct NVM writes

Only the TENET library code is allowed to perform writes to the NVM
data

Direct NVM writes in the application code is dangerous

15

A buggy application write on the NVM can cause spatial safety violation

Node A Node B Node CBuffer (64 bytes)

NVM Pool

NVM objects (application data structure)

Application code:
memcpy(buffer, src, 128)

NVM is read-only for the application code to prevent buggy writes from corrupting the NVM data

Readers access the
corrupted data

Prevent direct NVM writes using Memory Protection Keys (MPK)

16

Node A Node B

NVM Object Pool (read-only access)

Node C

How does application writes to the NVM objects?

……

TENET uses MPK to enforce read-only access to the NVM object pool for all the code
outside of the TENET library

NVM objects

Application code:
write(Node B)

SIGSEGV Exception MPK domain
Readers do not need to
validate NVM objects

Prevent direct NVM writes using Memory Protection Keys (MPK)

17

Node A Node B

NVM Object Pool (read-only access)

Node C

Node B

Validate DRAM Object for
spatial safety violation

DRAM Objects

……
NVM objects

Application writes only on the DRAM region and TENET writes back the DRAM object to the NVM
after validating it for spatial safety

Application code:
Update (B,B2) Updates to NVM object pool

through the TENET library
Node B2

How does TENET validate the DRAM objects?

Node B2

Protecting DRAM objects using canary bits

18

● TENET assigns 8 byte canaries at the boundary of a DRAM object at the time of its creation

● Canary bits are inspected when the application commits its transaction

Node B2 Canary(
C1)

Canary(
C0)Node A2 Canary(

C1)
Canary(

C0)… …

Buggy Application
write

Corrupted canary bits indicates a spatial safety violation

Spatial safety violation bug

Abort and terminate
the program

Commit time canary
bits validation

MPK and Canary bits validation together guarantees spatial safety for the NVM data

DRAM Objects

Read-only NVM access can cause temporal safety violations

19

Node A Node B

NVM Object Pool (read-only access)

Node C

How does TENET enforce temporal memory safety for the NVM objects?

……

Application can dereference a dangling pointer to an NVM object as TENET grants read access to the
NVM objects

NVM objects

Application code:
deref(NodeB)

Node B is already freed

Temporal safety violation
use-after-free bug

NVM object dereference succeeds

Does making NVM read-only solve all the problems and prevent NVM data
corruption?

Enforcing temporal safety for NVM objects using pointer tags

20

Node B
tag = 0xCAFE

tag is stored in the NVM object at the
time of creation

Node A
tag = 0xFACE

Encoded
pointer

Addresstag
0xCAFE

The encoded pointer to Node
B is stored in Node A

NVM address is tagged at the time of creation; the tag is stored in the allocated NVM object and a copy
of the tag is encoded in the upper 16 bits of the NVM pointer

● Node B’s address → 0x00001265FFCAB734; Tag → 0xCAFE

● Encoded pointer → Node B || Tag << 48 → 0xCAFE1265FFCAB734
 tag bits NVM address

 Encoded pointer layout
63 48 0 A copy of the tag is encoded to the upper

16 bits of Node B’s address

Upper 16 bits are unused

Enforcing temporal safety for NVM objects using pointer tags

21

Node B
tag = 0xCAFE

Node A
tag = 0xFACE

Encoded
pointer

 Encoded Node B pointer [NodeA→next]

Addresstag
0xCAFE

Application code:
deref(NodeA-->next)

Compare tags
==

Valid NVM pointer dereference

Application accesses the NVM objects using the encoded pointer -- the encoded tag in the pointer
is compared with the tag stored in the corresponding NVM object

Application dereferences
the encoded pointer

Enforcing temporal safety for NVM objects using pointer tags

22

Node B
tag = NULL

Node B is freed Node A
tag = 0xFACE

Encoded
pointer

Node B’s address

Addresstag
0xCAFE

Application code:
deref(NodeB)

Compare tags
==Dangling pointer dereference

use-after-free bug

Dangling pointer is detected by comparing the tag stored in the NVM object with the tag encoded
in the pointer to the NVM object

 Replicating NVM data for fault tolerance against UME

23

● NVM data corruption due to software errors

○ Spatial memory safety → MPK + canary bits validation

○ Temporal memory safety → Pointer tags validation

How does TENET make the NVM data fault tolerance against the UME?

● TENET replicates the NVM data to the local SSD to maintain backup copy

● Restore the corrupted NVM page from the SSD replica

Refer to the paper for more details
● TENET’s replication provides many desirable properties

○ Cost efficiency → replicating to the local SSD

○ Performance efficiency → replicating the data out-of-the critical path

○ Consistent loss-less recovery

Talk Outline

● Background NVM memory safety errors

● TENET and TimeStone Overview

● TENET Design

● Evaluation

● Conclusion

24

Evaluation of TENET

25

● We use a 2 socket server with 64 core Intel Xeon Gold CPU

○ 64GB DRAM, 512GB NVM, 1TB SSD

● We evaluate two different versions of TENET

○ TENET-MS → supports only memory safety

○ TENET → supports memory safety and fault tolerance

● We evaluate TENET with different data structures for different read/write ratios
○ YCSB workloads and microbenchmarks

● How does TENET compare against the prior PTM works in terms of features and performance overhead?

● How much overhead does TENET incurs over its baseline PTM system TimeStone?

Evaluation Questions

Evaluation Settings

Comparison of TENET with the other PTMs

26

PTM Baseline
PTM*

Spatial
safety

Temporal
Safety

Fault
tolerance

Libpmemobj-R libpmemobj

SafePM
[Eurosys-22]

libpmemobj

Pangolin
[ATC-19]

libpmemobj

TENET TimeStone

TENET is the only PTM to provide spatial memory safety, temporal memory
safety, and fault tolerance for the NVM data

*PTM - persistent transactional memory
*Libpmemobj is a transactional library in the PMDK

Replicates NVM data to a local
NVM pool

Adds address sanitizer (Asan)
to the libpmemobj

Supports parity based replication
and object checksums

Performance of TENET and SafePM for a concurrent hash table

27

~3.5X ~13X

~8%

Adding replication (TENET) incurs only a 8%
overhead

Memory safety
only

Memory safety +
fault tolerance

TENET is up to 13x faster than SafePM

For a fair comparison lets compare the relative performance slowdown
against their respective baseline PTM

Memory safety
only

Memory safety +
fault tolerance

Performance of TENET and SafePM for a concurrent hash table

28

H
ig

he
r

th
e

be
tt

er

● Performance is normalized to their respective baseline PTMs

○ SafePM normalized to the libpmemobj → throughput (safePM)/throughput (libpmemobj)

○ TENET normalized to the TimeStone → throughput (TENET)/throughput (TimeStone)

~55% slower
than libpmemobj

~12% slower
than TimeStone

~4% slower
than TimeStone

TENET adds ~12% performance overhead
for memory safety and fault tolerance

SafePM incurs ~55% performance
overhead for only memory safety guarantee

1.0 → is the maximum possible performance

Performance of TENET and SafePM for a concurrent hash table

29

H
ig

he
r

th
e

be
tt

er

● Performance is normalized to their respective baseline PTMs

○ SafePM normalized to the libpmemobj

○ TENET normalized to the TimeStone

~55% slower
than libpmemobj

~11% slower
than TimeStone

~4% slower
than TimeStone TENET does not require additional crash consistency

operations for its memory safety metadata

● MPK → hardware primitive
● Pointer tags → embedded directly into the object

TENET does not perform memory safety validation for
every NVM access

● Spatial safety checks performed only at the
commit time

● Temporal safety checks performed only at the
first-dereference of an NVM object

Refer to the paper for more details on these
optimizations

Other interesting insights in the paper

● How the spatial, temporal safety, and fault tolerance techniques works in tandem?

● How TENET leverages concurrency properties of PTM (ACID properties) for

performance efficiency?

● How TENET leverages RCU style grace period to guarantee a consistent recovery?

● Array interface design for guaranteeing spatial and temporal safety

● How can the TENET’s techniques be applied to the other PTM systems?

● More evaluations and in-depth analysis on TENET’s design

30

Conclusion

31

Thank You!

NVM is vulnerable to data corruption due to software bugs and media errors

● NVM is exposed to the user space thus it is vulnerable to spatial and temporal memory safety violations

TENET a NVM programming framework to design memory safe and fault tolerant NVM data structures and
applications

● Spatial memory safety → Memory protection keys (MPK) + Canary bits validation

● Temporal memory safety → Encoded pointer tag validation during dereference

● TENET guarantees fault tolerance for NVM data against uncorrectable media errors (UME)

○ Replicates the NVM objects to the local SSD

● TENET guarantees a robust memory protection and fault tolerance at a modest performance overhead

