
Enabling High-Performance and Secure Userspace

NVM File Systems with the Trio Architecture

Diyu Zhou
EPFL

Vojtech Aschenbrenner
EPFL

Tao Lyu
EPFL

Jian Zhang
Rutgers University

Sudarsun Kannan
Rutgers University

Sanidhya Kashyap
EPFL

Abstract

Userspace library file systems (LibFSes) promise to unleash
the performance potential of non-volatile memory (NVM) by
directly accessing it and enabling unprivileged applications
to customize their LibFSes to their workloads. Unfortunately,
such benefits pose a significant challenge to ensuring meta-
data integrity. Existing works either underutilize NVM’s per-
formance or forgo critical file system security guarantees.
We present Trio, a userspace NVM file system architec-

ture that resolves this inherent tension with a clean decou-
pling among file system design, access control, and metadata
integrity enforcement. Our key insight is that other state (i.e.,
auxiliary state) in a file system can be regenerated from its
“ground truth” state (i.e., core state). Thus, Trio explicitly de-
fines the data structure of a single core state and shares it as
common knowledge among its LibFSes and the trusted entity.
Enabled by this, a LibFS can directly access NVM without
involving the trusted entity and can be customized with its
private auxiliary state. The trusted entity enforces metadata
integrity by verifying the core state of a file when its write
access is transferred from one LibFS to another. We design a
generic POSIX-like file system called ArckFS and two cus-
tomized file systems based on the Trio architecture. Our
evaluation shows that ArckFS outperforms existing NVM
file systems by 3.1× to 17× on LevelDB while the customized
file systems further outperform ArckFS by 1.3×.

CCS Concepts • Hardware → Non-volatile memory; •
Information systems → Phase change memory; • Soft-
ware and its engineering → File systems management;

Keywords Userspace File Systems, Library File Systems, Di-
rect Access, File System Customization, File System Integrity,
Persistent Memory

Publication rights licensed to ACM. ACM acknowledges that this contribu-
tion was authored or co-authored by an employee, contractor or affiliate of
a national government. As such, the Government retains a nonexclusive,
royalty-free right to publish or reproduce this article, or to allow others to
do so, for Government purposes only.
SOSP ’23, October 23–26, 2023, Koblenz, Germany
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0229-7/23/10. . . $15.00
https://doi.org/10.1145/3600006.3613171

ACM Reference Format:

Diyu Zhou, Vojtech Aschenbrenner, Tao Lyu, Jian Zhang, Sudarsun
Kannan, and Sanidhya Kashyap. 2023. Enabling High-Performance
and Secure Userspace NVMFile Systemswith the TrioArchitecture.
In ACM SIGOPS 29th Symposium on Operating Systems Principles
(SOSP ’23), October 23–26, 2023, Koblenz, Germany. ACM, New York,
NY, USA, 16 pages. https://doi.org/10.1145/3600006.3613171

1 Introduction

Emerging non-volatile memory (NVM) technologies, e.g.,
Intel Optane persistent memory [11] and future CXL-based
storage devices [14, 27], offer the best of memory and
storage. NVM’s unique characteristics provide new oppor-
tunities to design high-performance file systems. Specif-
ically, NVM allows direct access with unprivileged load
and store instructions. Furthermore, the hardware mem-
ory management unit (MMU) enforces access permission
to different NVM regions, thus deprecating the need for
a privileged entity to mediate every NVM access. These
observations lead to userspace NVM file system designs
that move (most) parts of the file system functionality
out of the kernel to an application-linked library file sys-
tem (LibFS) [20, 23, 32, 35, 38, 46].
Userspace NVM file systems bring two key performance

advantages. First, applications can directly access NVM
through LibFS to perform file system operations, thereby
minimizing the software overhead in the storage stack. Sec-
ond, applications can customize its LibFS to bridge the seman-
tic gaps and further boost its performance [46]. Critically, an
application does not require special privileges to customize
its LibFS. Moreover, customizing for one workload may often
negatively affect another. Userspace NVM file systems can
effectively avoid this issue by assigning private LibFSes to
each application.
Unfortunately, the performance advantages also pose an

inherent challenge to enforcing file system security. Specifi-
cally, with direct access, malicious applications can bypass
enforcement and attack others by corrupting file system
metadata. Resolving this requires a trusted entity to vali-
date metadata integrity. However, due to customization, each
LibFS’ data structures may be different, which the trusted
entity does not understand, thus preventing the validation.

Existing designs fail to resolve such inherent tension. The
conventional design [20, 32, 35, 46, 48] employs a trusted

https://doi.org/10.1145/3600006.3613171
https://doi.org/10.1145/3600006.3613171

create()

attack

x

NVM

write() create()

NVM

write()
create() attack

x

attack
write()

create()

NVM Verifier

(a) Metadata update
mediation

(b) Direct access (c) Trio

APP APP APP

LibFS LibFS

APP APP

File system design

Trusted
entityLibFS

Core stateAuxiliary state

LibFS

Figure 1. Comparison of userspace NVM file system architectures.
(a) Designs [20, 32, 35, 46, 48] that mediate metadata updates pre-
vent direct NVM access and hinder unprivileged private customiza-
tion. (b) Designs [23, 38] that support direct NVM access incur
security vulnerabilities since malicious applications can corrupt
shared file system state. (c) Trio enables direct NVM access, un-
privileged private customization, and metadata integrity through
state separation and a clean decouple of responsibilities.

entity to mediate and perform metadata updates. While this
design ensures metadata integrity, it incurs expensive over-
head for metadata updates (up to 68%, as reported in [23]),
bakes file system design into the trusted entity, and there-
fore requires special privileges for customization. It thus
significantly compromises the aforementioned performance
advantages. On the other hand, ZoFS [23] enables direct meta-
data updates but forgoes metadata integrity. ZoFS offers pro-
tection by confining metadata corruption within one set of
NVM pages (i.e., coffer). Despite this, since applications share
coffers, malicious applications can still perform attacks by
corrupting the metadata within a coffer (§2.3.2).
We present Trio, a new userspace NVM file system ar-

chitecture that provides both performance and security by
supporting three crucial properties simultaneously: (1) Di-
rect access: LibFSes can directly access NVM for both data
and metadata operations on both regular files and directories.
(2) Unprivileged private customization: Applications can
flexibly customize their LibFSes without special privileges
(unprivileged) or affecting others (private). (3) Metadata in-

tegrity: As with kernel file systems, a malicious application
cannot attack others by corrupting the metadata state.

To overcome the inherent tension among the design goals,
our key insight is that file system state can be separated into
core state and auxiliary state. Core state is the essential state
that a file system uses as ground truth (e.g., inode, data pages),
while auxiliary state is decided by and can be rebuilt from
core state (e.g., in-memory cache, block bitmap). Using this
insight, Trio explicitly defines the layout and data structure
of a single core state, which are shared among components
while each component maintains its private auxiliary state.

Trio consists of three (types of) components: an in-kernel
access controller, per-application LibFSes, and a trusted
userspace integrity verifier. The kernel controller decides
which shared file system resources (i.e., NVM pages and in-
odes) a LibFS can access. Each LibFS realizes a complete file

system design, directly accesses a file1’s core state for data
and metadata operations, and performs unprivileged private
customization with its private auxiliary state.

To ensure secure sharing, Trio prevents LibFSes from up-
dating a file simultaneously. Furthermore, before a LibFS
accesses a file modified by another LibFS, the integrity veri-
fier checks if the file’s core state is valid. If not, the kernel
controller handles the corruption. Unlike a full offline file sys-
tem check, the integrity verifier only checks the core state of
a single file, making its overhead acceptable (ranges from sev-
eral to hundreds of microseconds for medium-sized files, as
reported in §6.5). The LibFS then rebuilds the file’s auxiliary
state from the valid core state and can securely access the file.
Trio thus departs from the prior approaches that either vali-
date metadata integrity for every operation [20, 32, 35, 46]
or completely forgo it [23, 38].
We demonstrate the advantages of Trio by designing a

generic POSIX-like (but not fully POSIX-compliant) file sys-
tem: ArckFS2. To fully exploit the benefits of direct access,
we carefully design ArckFS with efficient data structures,
scalable NVM data access engine, and fine-grained paral-
lelism, thereby achieving low latency, high bandwidth, and
excellent scalability for both data and metadata operations.

Using Trio, we further design two customized file systems
based on ArckFS’s core state: KVFS [46], which optimizes
for small file access, and FPFS [45, 53], which optimizes for
deep directory access. The customization involves chang-
ing interfaces and key metadata structures and is heavily
workload-specific. By making file system design solely the
responsibility of LibFS, Trio enables the customization with-
out special privilege or affecting other applications, neither
of which prior approaches [46] could achieve. Our evalua-
tion shows that ArckFS outperforms other file systems by
by 3.1× to 17× on LevelDB, and has two orders of magnitude
improvements in scalability microbenchmarks. KVFS and
FPFS further outperform ArckFS by 1.3×.
This paper makes the following contributions:
• Trio.We propose a new userspace file system archi-
tecture: Trio. Through file system state separation and
clean responsibility decoupling, Trio provides direct
access, unprivileged private customization, and meta-
data integrity simultaneously.

• ArckFS.We design ArckFS, a POSIX-like userspace
NVM file system based on Trio. ArckFS achieves low
latency, high throughput, and excellent scalability for
both data and metadata operations.

• File system customization. We present two cus-
tomized file systems, demonstrating the flexible un-
privileged private customization enabled by Trio.

1We use the term “file” to refer to both regular files and directories.
2named after Beethoven’s Piano Trio “Archduke”

In-kernel Metadata update
mediation (§2.3.1)

Direct access
(§2.3.2) Trio

Direct data access × ✓ ✓ ✓
Direct metadata access × × ✓ ✓
Unprivileged custom. × × ✓ ✓

Per-app custom. × × × ✓
Metadata integrity ✓ ✓ × ✓

Table 1. Summary of NVM file systems.

2 Background and Motivation

Our work and many related NVM file systems are not limited
to a specific NVM technology. This section presents our
hardware assumptions on NVM (§2.1), a motivation for file
system customization (§2.2), existing userspace NVM file
systems designs (§2.3), and a summary of lessons we learned
from prior designs (§2.4), which motivates Trio.

2.1 NVM Technologies

Hardware assumptions. Across the paper, we use the
term “NVM” to denote storage devices with the following
characteristics. First, software can access NVM through un-
privileged instructions (e.g., load/store). Second, there exist
mechanisms (e.g., page tables) for privileged software to en-
force access permission to NVM regions. Third, the access
latency of NVM is low. Fourth, NVM is byte addressable. The
first two characteristics enable secure userspace access. The
third characteristic motivates reducing software overhead,
and the last characteristic is critical to the file system design.
Present and future use of NVM. Many storage devices
meet the above assumptions. Specifically, industry has been
using battery-backed DRAM as NVM [10, 34]. Intel Optane
Persistent Memory [11], based on 3D Xpoint [1], is the first
publicly available NVM technique. Emerging Compute Ex-
press Link (CXL) standard [3] introduces new possibilities
to NVM. The current CXL standard includes specific sup-
port for NVM [2]. Industry has already proposed CXL-based
NVM devices with new memory technologies [12, 27] or a
combination of battery-based DRAM and flash memory [14].

2.2 File System Customization

A general-purpose system aims to provide acceptable perfor-
mance under all scenarios and thus cannot provide optimal
performance for a specific workload. As a result, improving
application performance with workload-specific customiza-
tion of the underlying system software has been extensively
studied [25, 30, 33, 40, 41, 46, 52].
Prior works have built customization frameworks for

scheduling [33], kernel locks [40], and the entire operat-
ing system [25, 30]. These frameworks aim to provide two
key characteristics. First, customization can be performed
securely without special privileges. Thus, all applications
in the system can benefit from customization. Second, cus-
tomization performed by one application does not affect
other applications. This is critical since a custom mechanism

that optimizes performance for one workload can reduce
performance for others. However, as detailed below, existing
userspace NVM file systems cannot fully achieve the above
two characteristics.

2.3 Userspace NVM File Systems

Prior research on userspace NVM file systems has deeply
investigated the direct access and customization benefits.
They have proposed novel designs to enable direct access
for data [32] or even metadata operations [23, 54]. In
addition, Aerie [46] pioneers userspace NVM file system
customization and proposes flexible interfaces to efficiently
implement LibFSes. Existing works on userspace NVM file
systems also explore leveraging NVM in tired storage [35],
maximizing multicore scalability [20], or minimizing
indexing overhead [38].
Userspace NVM file systems typically assume a threat

model where hardware, kernel, and privileged userspace
processes are not compromised and thus trusted. However,
LibFSes and applications are not trusted and can cause
arbitrary corruption in the file system. As a result, the
design of userspace NVM file systems focuses on preventing
metadata (i.e., any state other than actual data in regular
files) corruption from malicious applications and LibFSes.
Despite their impressive achievements, existing designs
either enforce metadata integrity at a high performance
cost (§2.3.1) or relax the guarantee, leading to security
vulnerabilities (§2.3.2).

2.3.1 NVM FS based on metadata update mediation

One type of userspace file systems achieves metadata in-
tegrity by preventing LibFSes from directly updating it [20,
32, 35, 46]. Instead, a trusted entity, either in the kernel or
as a privileged process, receives metadata update requests
from LibFSes, validates the requests, and performs the up-
date for the LibFS. This introduces an undesirable coupling
between file system design and the trusted entity and thus
significantly impacts performance, as we detail below.
Increase software overhead for metadata updates. All
metadata updates involve expensive IPCs or context switches
between the LibFS and the trusted entity, significantly in-
creasing the software overhead. ZoFS [23] reports that such
mediation incurs an overhead of 44% for 4KB appends and
68% for file creations. Furthermore, synchronizing metadata
access between the trusted entity and LibFSes introduces
a scalability bottleneck. Existing designs rely on complex
lock-free algorithms to resolve it [20].
Aerie [46] and Strata [35] alleviate the communication

overhead by batching the update requests in a local log. This
incurs an extra write to the log. The log also requires garbage
collection mechanisms, leading to additional overhead and
complexity. Finally, a log shared by all threads may become

a scalability bottleneck, while a per-thread log requires a
complicated algorithm for correctness [18].
Hinder customization. With this design, file systems bake
the implementation of metadata updates into the trusted
entity. Thus, to customize, for example, a data structure used
in metadata updates, an application needs special privileges
to change the trusted entity. Furthermore, such changes
affect all applications that share the trusted entity.

2.3.2 NVM FS based on direct metadata updates

Another type of userspace file systems relaxes the meta-
data integrity guarantee to enable direct metadata up-
dates [23, 38, 54]. ctFS [38] does not enforce metadata in-
tegrity, assuming that all applications sharing the file system
trust each other. MadFS [54] allows direct updates to certain
metadata in regular files and thus similarly suffers from some
of the vulnerabilities mentioned below.
ZoFS overview. ZoFS allows direct metadata updates and
offers protections with the coffer abstraction [23]. A coffer
contains multiple NVM pages with the same access permis-
sion. ZoFS couples a LibFS to a coffer instead of an applica-
tion as in prior designs (§2.3.1). Hence, applications access a
shared coffer through the same LibFS and share that LibFS’s
state (Figure 1). ZoFS does not prevent metadata corruption
but instead mitigates its effects. For example, ZoFS uses Intel
MPK [13] to make LibFSes access only one coffer at a time,
thereby confining the metadata corruption within that coffer.
ZoFS limitations. Since multiple applications use the same
LibFS to access one coffer, customizing one LibFS affects all
the applications sharing that coffer.
ZoFS does not enforce metadata integrity and allows ap-

plications to update the shared coffer and LibFS state simul-
taneously. Although ZoFS can prevent some attacks, these
two design choices lead to several vulnerabilities. Some ex-
amples include (1) Memory-based exploitation. A malicious
application (attacker) can modify pointers in file system
data structures, causing another application (victim) to leak
or overwrite sensitive information in DRAM. For example,
suppose a victim copies a file. The attacker can modify the
pointers in the source file’s indexes to point to the victim’s
sensitive DRAM data, making the victim write it to the des-
tination file. (2) Denial of service attack. For example, as
noted by ZoFS’s authors, an attacker can hold locks in the
LibFS forever. (3) Semantic attack. An attacker can perform
attacks by violating file system guarantees. For example, an
attacker can remove non-empty directories, making files
disconnected from the root path. Other examples include
creating files with the same name under one directory or
causing loops in directory paths.

2.4 Lessons Learned from Prior Designs

Avoid metadata update mediation. Mediating metadata
updates incurs significant overhead, hinders customization,

introduces scalability bottlenecks, and greatly complicates
system design (§2.3.1).
Enforce metadata integrity with trusted entities. Not
enforcing metadata integrity leads to severe security vul-
nerabilities (§2.3.2). While it is possible to let a LibFS check
the metadata integrity before its access, this imposes a sig-
nificant burden on programming LibFS. Furthermore, LibFS
does not have the knowledge and the privilege to handle
corruption (e.g., revoke file system access permission from a
malicious application). Thus, central trusted entities should
enforce metadata integrity.
No simultaneous state sharing among applications.

Sharing LibFS state among applications prevents per-
application customization and incurs security vulnerabil-
ities (§2.3.2). Thus, each LibFS should belong to only one
application. Concurrent writes to NVM pages (e.g., coffer)
from multiple applications also open up opportunities for
attacks. Thus, as prior designs (§2.3.1), only concurrent read
access or exclusive write access to a file should be allowed.

3 The Trio Architecture

Motivated by §2, we present Trio, a userspace file system ar-
chitecture that unleashes the performance potential of NVM
while ensuring metadata integrity. This section presents
Trio’s design goals and challenges (§3.1), design overview
(§3.2), and concludes with a discussion (§3.3).

3.1 Trio Design Goals and Challenges

We design Trio to meet the following goals and resolve the
inherent tension among these goals.
Direct access. To minimize software overhead and avoid
scalability bottlenecks, Trio allows a LibFS to access NVM
directly to perform both data and metadata operations on
both regular files and directories.
Unprivileged private customization. To facilitate un-
privileged customization, Trio must cleanly decouple file
system design from trusted entities; file system design is
only LibFSes’ responsibility. Furthermore, a LibFS should
not be shared so that applications can customize their LibF-
Ses without affecting others.
File sharing. To maintain the conventional file system
abstraction, Trio should allow multiple applications, each
has a different private LibFS, to share files. However, with
unprivileged private customization, each LibFS has its own
file system semantics. It is challenging to enable file sharing
among LibFSes with, for example, different data structures.
Metadata Integrity. Since applications can be buggy or
malicious, as with kernel file systems, Trio must prohibit
ill-behaved applications from (1) accessing data without per-
mission and (2) conducting attacks on others by corrupting
the file system’s metadata.

It is advantageous for trusted entities to enforce metadata
integrity (§2.4). However, Trio’s other design goals make
it challenging. First, to meet the direct access design goal,
trusted entities cannot use the conventional approach to
mediate metadata updates. Second, due to file system cus-
tomization, the trusted entities do not understand LibFSes’
data structures and thus cannot verify their integrity.

3.2 Trio Overview

File system state separation. To overcome Trio’s design
challenges, we consider the state in a file system.We find that
it can be separated into (1) “core state”, which is the essential
state of a file system and cannot be generated if lost (i.e., hard
state [42]), and (2) “auxiliary state”, which can be discarded
and if necessary, rebuilt from the core state (i.e., soft state).
Hence, Trio can use core state as common knowledge among
components for sharing and integrity enforcement while
achieving its performance goals with auxiliary state.

More specifically, core state contains the most important
file system state: contents of files and the critical metadata
to realize the basic file system abstraction (e.g., file names,
file access permissions, the directory hierarchy). Auxiliary
state contains the information to maintain file system inter-
faces (e.g., file descriptors), to achieve supporting functional-
ities (e.g., locks), and to speed up accessing core state (e.g.,
various types of caches, the inode bitmap). Core state must
be in non-volatile storage since it cannot be lost, while aux-
iliary state can be in either non-volatile or volatile storage.
The exact core state and auxiliary state depend on the file
system design. We provide one example of POSIX-like file
systems in §4.

To achieve the design goals,Trio first explicitly defines the
data layout and the data structure of a single core state. All
the components of Trio, namely all LibFSes and the trusted
entities, share this core state. A LibFS cannot change the
data structure of the core state. Instead, each LibFS manages
and can freely change its private auxiliary state. As detailed
below, such state separation enables Trio to overcome its de-
sign challenges and simultaneously meet all the design goals.
Trio components. Figure 2 shows the components of Trio
and its workflow. Unlike prior architectures [20, 23, 32, 35,
46], Trio cleanly decouples file system design, access control,
and integrity verification from each other. Specifically, Trio
consists of three (types of) components: per-application LibF-
Ses, an in-kernel access controller, and a trusted userspace
integrity verifier as a standalone privileged process. Each
LibFS has its own file system design based on its private aux-
iliary state. The kernel controller enforces each LibFS’ access
to the shared file system resources (e.g., NVM pages, inodes).
Upon sharing a file, the integrity verifier inspects the file’s
core state modified by a LibFS (or a malicious application) to
enforce metadata integrity.

Auxiliary state

APP

Integrity verifier

map
unmap

("/foo")

verify

("/foo")

pass

or fail

recover8

/foo

Kernel controller

1 2 5 6 map7
map

("/foo")
9

LibFS

4 read

build3

4

/foo

write

LibFS

11 read

build

/foo

write

APP

11

10

Figure 2. Trio enables file sharing between two different LibFSes.
(1) A LibFS requests access to a file, and (2) the kernel controller
grants it access to the file’s core state. (3) The LibFS builds the
file’s auxiliary state. (4) Afterwards, the LibFS directly accesses
the file. (5) Upon sharing, the LibFS unmaps the file, and (6) the
kernel controller sends the file for verification. (8) If fails, the kernel
controller handles the corruption (§4.3). (9) The kernel controller
grants the other LibFS access to the file’s valid core state. (10) The
LibFS builds the file’s auxiliary state and (11) accesses the file.

Protected direct access. With Trio, a file’s NVM pages
only contain the state of that file. When a LibFS accesses a
file for the first time, it requests the kernel controller access
to the core state of the file. If it has permission, the kernel
controller grants access by programming the MMU. After
obtaining access, a LibFS can access the core state for both
metadata and data operations without involving any trusted
entity, thereby achieving the direct access goal.
Flexible unprivileged private customization. Thanks to
the state separation, file system design is solely the respon-
sibility of LibFSes. Furthermore, each LibFS only belongs to
one application. An application can thus freely perform cus-
tomizations on the LibFSes’ auxiliary state, thereby achieving
the unprivileged private customization design goal (§5).
File sharing among different LibFSes. The sharing gran-
ularity in Trio is a single file. Since every LibFS understands
the data structure of core state, despite having a different
design, each LibFS can share a file by building its auxiliary
state from the core state. As detailed below, Trio enforces a
concurrent reads or exclusive write file sharing policy. Hence,
a LibFS does not need to handle stale auxiliary state; either
it is the only writer, or the file is read-only.
Enforcing metadata integrity. Enforcing metadata in-
tegrity requires avoiding simultaneous sharing of LibFSes
and files state and preventing metadata corruption (§2.4). To
avoid simultaneous state sharing, Trio associates a LibFS
to one application and enforces concurrent read accesses or
exclusive write access to a file.
Trio offers a guarantee that metadata corruption is con-

fined to the application that causes it. As a result, Trio pre-
vents attacks from malicious applications while enabling
direct access. To realize this guarantee, when one LibFS re-
leases its write access to a file, Trio informs the integrity

verifier to check the file’s core state. The LibFS then waits
for the verification (and the potential fix for state corruption)
to complete. If the verification fails, the integrity verifier
informs the kernel controller to handle it. The kernel con-
troller can handle the corruption with various policies, such
as preventing future access to the file, rolling back the file to
a checkpoint state, or fixing the state corruption. Section 4.3
details one checkpoint-based policy that also minimizes data
loss by allowing LibFSes to commit changes.
Controlling the trust boundary. With Trio, sharing a file
across the trust boundary incurs the overhead of file map-
ping and unmapping, integrity verification, and rebuilding
the auxiliary state. Following the conventional OS design,
the default trust boundary in Trio is a process. However,
such a trust boundary is often too restrictive since processes
may mutually trust each other (e.g., processes belonging to
the same application). Trio’s design enables a user to control
the trust boundary explicitly, thereby improving sharing per-
formance. Specifically, Trio provides an abstraction named
trust group, which contains multiple processes belonging to
the same user and mutually trusting each other. Thus, pro-
cesses in the same trust group can share files with a shared
LibFS and thereby avoiding the sharing overhead.

3.3 Discussion and Limitations

Data integrity. In essence, ArckFS aims at offering the
performance advantages of userspace file systems (by maxi-
mizing direct access and unprivileged private customization)
while preserving the same abstraction (by enabling file shar-
ing) and security guarantee (by enforcingmetadata integrity)
of kernel file systems. Therefore, enforcing data integrity (i.e.,
protecting data in regular files) is orthogonal toTrio’s design.
Since Trio already enforces file access permissions (with
MMU as discussed in §3.2), as with kernel file systems, the
user is responsible for managing file access permissions to
protect against malicious users. For unintentional corrup-
tions caused by, e.g., software bugs or hardware errors, file
systems based on ArckFS can design its core state to employ
the relevant protection techniques.
Limitations. Trio inherits two general limitations from
prior userspace NVM file systems [20, 32, 35, 46]. First, file
systems based on the Trio architecture cannot fully conform
to certain file system semantics like POSIX. Specifically, to
ensure metadata integrity, Trio cannot support concurrent
write accesses from multiple untrusted applications to a file.
Other examples include MMU cannot enforce the search
permission of a directory, and file timestamps under certain
scenarios cannot be precisely maintained (e.g., the access
time of a read-only file). Second, Trio incurs extra costs
upon file sharing. However, the sharing cost is not incurred
when the file is read shared, or shared within a process or
a trust group. The sharing cost is high only when multiple
untrusted applications frequently write to a shared file. File

LibFS

Kernel
controller

Shadow
inode table

File pages: inodes, files, directories
Core
state

block
allocator

Super block

POSIX
interface

per-file
radix tree

file descriptor
table

inode
allocator

block
allocator

LibFS
info

per-file
radix tree

Integrity
 Verifier

ArckFS KVFS FPFS

per-file
fixed array

file descriptor
table

POSIX
interface

key-value
interface

per-directory
hash table

global
hash table

per-directory
hash table

Figure 3. An overview of the three presented userspace NVM file
systems using the Trio architecture. All the LibFSes share the same
core state, kernel controller, and integrity verifier.

systems in a central trusted entity are more suitable for the
above scenario.

4 ArckFS: POSIX-like FS Using Trio

This section concretizes the design of Trio by presenting
ArckFS, a userspace file system using the Trio architecture.
ArckFS provides the POSIX APIs with similar file system se-
mantics. In addition to the properties enabled by Trio (§3.1),
ArckFS further features: (1)Minimal core state. Deciding the
core state of a file system involves tradeoffs. A large core
state reduces the building time of the auxiliary state upon
sharing and simplifies LibFS development. A small core state
increases the flexibility of customization and reduces the
time in verifying metadata integrity. Thus, ArckFS chooses
a minimal core state design. (2) Multicore scalability. Mod-
ern servers have hundreds of CPUs. While NVM allows a
high degree of concurrent access, the storage stack often in-
troduces scalability bottlenecks (e.g., VFS [20, 39]). ArckFS
maximizes concurrent access with fine-grained parallelism.

The rest of the section presents ArckFS ’s core state (§4.1),
how it achieves high performance and multicore scalabil-
ity(§4.2), enforces metadata integrity(§4.3), and preserves
crash consistency (§4.4).

4.1 Core state

Layout. As shown in Figure 3, ArckFS’s core state consists
of a superblock, a shadow inode table, and file pages. The
superblock records the general file system information (e.g.,
the total number of blocks). The kernel controller maintains
the shadow inode table to enforce metadata integrity (§4.2).
As detailed below, the file pages contain the inodes and data
of directories and regular files. A LibFS has read access to the
superblock, has no access to the shadow inode table, and the
file access permission decides a LibFS’ access to file pages.

Next, we present the data structure design in file pages to
minimize the core state while maximizing direct accesses by
enabling MMU to correctly enforce the access permission
for common file system operations.
Core state of a regular file. Common operations on a
regular file are read, write, and truncate. Read requires file

Aux.
state

Core
state

RW
range lock

RW
lock

Index
pages

a.txt b.txt tail

Data
pages

Hash
table

rootRadix
tree

Index
pages

Regular file Directory

a.txt

...

Index tail

c25f783d6e

......

Hash("a.txt");

tail
Data
page

Data
page

Data
page

Data
page

Figure 4. ArckFS’s regular file and directory data structures (§4.2).

read permission, while write and truncate require write
permission. Thus, to support direct userspace handling, a
regular file contains index pages and data pages (Figure 4).
Each entry of index pages points to a data page. The last
entry of an index page points to the next index page. By map-
ping the index pages and data pages, the LibFS can directly
handle read, write, and truncate. The LibFS persists data
operations immediately (§4.4) and thus ignores fsync().
Core state of a directory. Common operations on a direc-
tory are search a file under it, list all files under it, stat
(obtain the statistics of) a file, insert a file, and delete a
file. Search, list, and stat operations require directory read
permission and insert and delete require write permission.
A directory contains index pages and data pages with

directory entries. A directory entry contains information
like inode number, file name, and the length of name. Thus,
the LibFS can directly perform list and search by mapping
the index and data pages of directories. As a result, LibFS
resolves a path by mapping each directory’s pages along the
path and search for the next file.

As discussed above, stat, create, and delete require the
read or write permission of the file’s parent directory (instead
of the file itself). To support direct userspace handling of
these operations through page mapping, ArckFS co-locates
a file’s inode together with its directory entry. For example,
in Figure 4, the “a.txt” (and “b.txt”) block contains both the
file’s inode and its directory entry. Due to the co-location,
there can be no "." and ".." in the core state of a directory.
Instead, a LibFS maintains them in its auxiliary state. Sec-
tion 4.3 discusses how to preserve the integrity of sensitive
information in inodes (i.e., file access permission).

4.2 Handling File System Operations with LibFS

ArckFS’ LibFS handles file system operations by directly
accessing its auxiliary state and the mapped core state (i.e.,
files’ index and data pages). In addition, occasionally, the
LibFS issues request to the kernel controller to, e.g., map or
unmap files and allocate or free NVM pages. We next discuss
the design of LibFSes’ auxiliary state (as shown in Figure 4)
to enable efficient and scalable file system operations.

Regular file operations. For a regular file, the LibFS uses a
radix tree to map the offset within a file to the corresponding
index page. Inspired by prior works [20, 43, 55], LibFS enables
fine-grained concurrent access to a file with a readers-writer
inode lock and a readers-writer range lock. Thus, within a
process, LibFS allows one thread to append or truncate the
file and multiple threads to concurrently write the disjoint
region of the file and concurrent read from the file.
Directory operations. For each directory, the LibFS uses
a resizable chained hash table to map the name of a file to
its directory entry. In addition, the LibFS extends the per-
inode log-structured design in NOVA [49, 50] by maintaining
a logging tail for each non-full data page instead of a single
logging tail in NOVA. Thus, threads can operate in parallel on
different logging tails. To handle size increases, the LibFS
also maintains the tail of the index pages (index tail). Each
directory has three types of locks: per-bucket readers-writer
locks in the hash table, a lock for each logging tail, and a lock
for the index tail. As shown in §6.4, such a design achieves
much better scalability than prior works.
Building auxiliary state from core state. For a regular
file, the LibFS initializes a radix tree and iterates through
the index pages to insert its address into the radix tree. It
finishes the building by initializing the inode lock and the
range lock. For a directory, the LibFS iterates the directory
entries and inserts them into the hash table. It finishes the
building by initializing the logging tails, the index tail, and
their locks. A LibFS can preserve the auxiliary state of a file
until another application requests to write to the file.

4.3 Enforcing Metadata Integrity upon Sharing

Trio enables confining metadata corruption within the ap-
plication that causes it (§3.2). This subsection presents how
ArckFS enforces this guarantee by detecting and fixing meta-
data corruption in a file’s core state upon sharing.
Detecting metadata corruption. The integrity verifier in
ArckFS is a trusted standalone process responsible for de-
tecting metadata corruption. We refer to the integrity checks
in the ext4 file system checker (i.e., e2fsck) [9, 17] and adapt
them to ArckFS. We find that ArckFS’ minimal core state
greatly simplifies the integrity check. Also, the checks in
ArckFS are quite different from e2fsck and include a few
extra checks due to (1) the differences in file system data
structures and (2) that e2fsck checks file system integrity
globally and offline while ArckFS’ integrity verifier operates
on an individual file and online. The integrity verifier detects
metadata corruption by checking the following invariances.
I1: Fields in each inode and directory entry are valid.

The integrity verifier checks for invalid values of each field
and inconsistency among fields within the file. Examples
include (1) the file type is valid: either a directory or a regular
file, (2) no file shares the same name under one directory,
and (3) no “/” in file names.

I2: A file’s inode number, index pages and data pages

are valid. Specifically, a file’s inode, index page, and data
pages must either already exist before mapping to the LibFS
or be allocated to the LibFS by the kernel controller. Further-
more, the inode and pages are not doubly referenced.

To perform these checks, the kernel controller maintains
the following global file system information: (1) all the in-
odes and pages that are write-mapped or allocated to each
LibFS and (2) all the inodes and pages that are in the existing
files. The kernel controller updates such information when
a LibFS maps or unmaps a file and allocates or frees inodes
or data pages. The integrity verifier has read access to such
information and can thereby perform the checks.
I3: The directory hierarchy forms a connected tree.

Since ArckFS’s directory core state does not contain "." and
".." (§4.1), the integrity verifier is freed from checking the
inconsistency caused by them. Since ArckFS currently does
not support hard links, enforcing I2 already prohibits cy-
cles in the directory hierarchy. Thus, enforcing I3 means the
integrity verifier only needs to ensure the directory tree is
connected. To achieve this, the integrity verifier compares
the directory under check against its checkpoint state (used
for recovery as detailed below) to identify deleted child di-
rectories. The integrity verifier then checks that the deleted
child directory is not mapped to any LibFS and has no file
under it.
I4: The access permission is correctly enforced. ArckFS
uses MMU to enforce the access permission under most sce-
narios, with one case requiring extra handling. Specifically,
inodes mapped to LibFSes contain access permissions (§4.1).
Therefore, any application with write access to the directory
can modify the permissions, leading to security vulnerabil-
ities. To resolve this, the kernel controller maintains file
access permission in the shadow inode table (§4.1) and uses
them as ground truth; the ones in a normal inode are treated
as cached state. To execute permission change operations (i.e.,
chmod and chown), a LibFS issues request to the kernel con-
troller to modify the access permission in the shadow inode.
Fixing metadata corruption. ArckFS handles corruption
by rolling back the file’s metadata to a checkpoint state while
also includingmechanisms tominimize data loss. Specifically,
before the kernel controller grants one LibFS (LibFS A) write
access to a file, it checkpoints the file’s metadata (i.e., index
pages for a regular file; both index and data pages for a
directory). Afterward, upon file sharing, if the verification
fails, ArckFS notifies LibFS A to fix the corruption with a
timeout. If LibFS A cannot fix the corruption, the kernel
controller makes the corrupted file a private file to LibFS A
and preserves LibFS A’s access to avoid data loss.

The kernel controller then fixes the corruption by making
a copy of the corrupted file and reverts the file’s metadata
state to a checkpoint state. An inconsistency might occur

between the current and the checkpointed file size. The ker-
nel controller resolves it by trimming or padding zero bits to
the file. To further avoid data loss, the kernel controller pro-
vides a commit call for LibFSes to replace a file’s checkpoint
with the current state, given that the current state passes the
integrity check, thereby ensuring the kernel controller will
not revert the changes.

4.4 Crash Consistency

Overview. ArckFS’ core state (§4.1) does not specify a
crash consistency mechanism to enable LibFSes to design
their own. Thus, when a LibFS registers with the kernel con-
troller, it also needs to specify a program to handle crashes.
Upon reboot after a crash, the kernel controller invokes this
program to perform recovery. Since ArckFS cannot trust
the programs provided by LibFSes, it invokes the integrity
verifier after recovery to ensure the valid state of all files
that are mapped as writable when the crash occurs.
Consistency mode of the LibFS. We next discuss the de-
sign of the crash consistency mechanism of ArckFS’ LibFS.
Similar to other designs [24, 31, 32, 49, 55], the LibFS en-
sures all metadata operations are synchronous (i.e., the oper-
ation persists on NVM before the system call returns) and
atomic (i.e., no partial update). Data operations are synchro-
nous but not atomic (i.e., a partial write is possible upon
crash). Extending the LibFS to support other consistency
modes is simple by following the prior approaches [32, 49].
Consistency mechanism in the LibFS. Current hardware
supports atomic NVM updates up to 16 bytes [24, 55]. For
most operations, ArckFS’s core state design (§4.1) enables
LibFSes to use atomic updates to ensure crash consistency.
For example, during file creation, LibFS first persists all other
writes of the directory entry with an inode number 0 to mark
the directory as invalid. Finally, it persists the update to the
inode number. A few complex operations, such as rename,
require journaling. ArckFS uses undo logs for simplicity.

4.5 Implementation

We implement the kernel controller as a module for the
5.13.13 Linux kernel. As with prior works [35, 46], the kernel
controller uses leases to prevent a LibFS from holding a file
forever. The LibFS’ index structures, specifically the radix
tree and the hash table (§4.2), are inspired by ScaleFS [18].
As with NOVA [49] and WineFS [31], the kernel controller and
LibFS implement the heap and inode allocators in DRAM
as red-black trees. However, since the aforementioned file
systems are in the kernel, most of the time, we need to reim-
plement the data structures in the LibFS. We implement
the kernel controller and the integrity verifier from scratch.
The kernel controller, LibFS, and the integrity verifier have
3791, 7586, and 457 lines of code, respectively. The code of
the integrity verifier is small since there is no complex data

structure in ArckFS’s core state, and verifying metadata
integrity in runtime avoids many checks [26].
Multicore scalability. ArckFS’s design enables fine-
grained parallelism to directories and files (§4.2). In addi-
tion, we make key data structures in the kernel controller
and LibFS per-CPU, including the block allocators, inode
allocators, file descriptor allocators, and journal. ArckFS
implements its readers-writer locks based on state-of-the-art
synchronization techniques [22].
Adapting to Intel Optane PM. We implement ArckFS for
the Intel Optane PM since it is the only publicly available
NVM. Due to the hardware design of Optane PM, excessive
concurrent access frommultiple CPUs and remote NUMA ac-
cess significantly degrades performance [21, 29, 47, 51]. Thus,
ArckFS employs the opportunistic delegation technique in
OdinFS [55] to maximize PM performance. Specifically, Ar-
ckFS creates multiple background kernel threads (delegation
threads) in each NUMA node. The delegation threads are
shared by all LibFSes. Application threads cannot access
NVM but instead sends the access request to one of the dele-
gation threads in the corresponding NUMA node with a per-
application ring buffer. Afterward, the application threads
wait for the delegation threads to perform and complete
the access. The fixed number of delegation threads avoids
performance collapse due to concurrent access. Moreover,
delegation threads always perform local NVM access. There-
fore, it scales NVM performance. Furthermore, by striping
the file data across NVM in multiple NUMA nodes, ArckFS
handles bulk data operations by letting delegation threads ac-
cess NVM nodes in parallel, fully utilizing aggregated NVM
bandwidth. Due to the communication overhead, ArckFS
does not delegate small NVM access (read access less than
32KB and write access less than 256 bytes).

5 File System Customization

This section showcases Trio’s unprivileged private cus-
tomization advantage with two customized LibFSes: KVFS,
which is very similar to the customization case in Aerie [46],
and FPFS, which is based on full path indexing [45, 53]. KVFS
and FPFS’s designs are based on ArckFS’s core state (§4.1),
involving heavy changes in the interfaces andmetadata struc-
tures of ArckFS’s LibFS. Furthermore, KVFS and FPFS as-
sume specific workloads and cannot (efficiently) handle other
workloads or even certain basic file system operations. For
example, FPFS cannot efficiently handle rename. Nonethe-
less, realizing KVFS and FPFS with Trio does not require
modifying the trusted entities, and Trio enables deploying
them to only applications that can benefit without affect-
ing other applications. Neither of these two advantages is
possible with Aerie.
KVFS. Applications, such as email clients [5] and some HPC
applications [15, 16], operate on many small files. A generic
file system incurs the overhead of file descriptors with the

open and close interfaces. Furthermore, the file system also
suffers from the overhead of managing and walking index
structures. Both overheads are too high for small files.
We design KVFS to optimize applications working with

many small files. Specifically, we add to ArckFS’ LibFS get
and set interfaces, that directly read from, or create and
write to a specified file, respectively. The get and set APIs
always operate from the beginning of a file. Thus, it does not
need to maintain file descriptors, thereby eliminating their
overhead. KVFS assumes a small maximal file size (32KB
in our design). Thus, we replace the radix tree in ArckFS’
auxiliary state with a fix-sized array, thereby minimizing
the overhead associated with index structures. Finally, with
many files, concurrent accesses from threads to the same
file becomes unlikely. Therefore, we replace the fine-grained
locks in ArckFS’ auxiliary state with a simple spinlock to
optimize for non-contended cases.
FPFS. With a typical file system, resolving a path requires it-
erating through each directory along the path. This approach
incurs high overhead with deep directory hierarchies. We
design FPFS for applications working with deep directory
hierarchies. FPFS replaces the per-directory hash table in
ArckFS’ auxiliary state with a global hash table that directly
maps a path to the corresponding directory entry in the core
state. It thus eliminates directory traversals and significantly
improves the performance of applications working with deep
directory hierarchies.
Customization limits. To enforce metadata integrity, Trio
limits the scope of customization to the auxiliary state in
each LibFS (§3.2). Hence, customizations involving changing
the core state require special privileges. For example, Ar-
ckFS’s core state cannot support conventional log-structured
file systems [37, 44]. Nonetheless, ArckFS’s minimal core
state (§4.1) can enable various customizations, including file
system interfaces, caching mechanisms, key data structures,
concurrency control, and crash consistency, which is more
flexible than prior approaches like Aerie.

6 Evaluation

Our evaluation answers the following questions:
• What is ArckFS’s performance with a single thread
(§6.2) and multiple threads (§6.3)?

• Does ArckFS scale file system operations? (§6.4)
• CanArckFS ensure metadata integrity upon malicious
LibFSes and what is the sharing cost? (§6.5)

• How do ArckFS and the customized file system per-
form with macro-benchmarks and LevelDB? (§6.6)

6.1 Evaluation setup

Environment. Our evaluation machine has eight sockets
and equips with 224-core Intel Xeon Platinum 8276L pro-
cessors and 6144GB Optane PM DIMMs. The system runs
Ubuntu 20.04 and Linux kernel 5.13.13.

Baseline file systems. We compare ArckFS against
five in-kernel file systems: ext4 [6], PMFS [24], NOVA [49],
OdinFS [55], WineFS [31], and two userspace file systems:
SplitFS [32], Strata [35]. ext4 is a mature and widely used
real-world file system and others are state-of-the-art NVM
research file systems. PMFS is developed by Intel to exploit
NVM characteristics, particularly the byte addressability.
NOVA and WineFS improve upon PMFSwith efficient data struc-
tures and faster crash consistency mechanisms (per-inode
log in NOVA and per-CPU journaling in WineFS). OdinFS builds
upon NOVA and WineFS with opportunistic delegation to
maximize NVM performance (§4.5).
SplitFS and Strata are the only userspace file systems we

can run and evaluate (as detailed below). Both handle data
operations in userspace and require a trusted entity to handle
metadata operations (§2.3.1). In the current implementation,
SplitFS uses ext4, while Strata uses a privileged process.
Configuration. We configure the baseline file systems with
the default setup except that we enable the DAX option for
ext4. They provide weaker or the same crash consistency
guarantee as ArckFS (§4.4). We evaluate ArckFS with two
setups. The default one utilizes all eight NVM NUMA nodes,
each with twelve delegation threads (following OdinFS’ de-
fault setup). This setup demonstrates the maximal through-
put and scalability ArckFS can achieve. For comparison, we
configure OdinFS with the same setup. We further create
a RAID0 of NVM nodes [4] and mount ext4 on top of it
(ext4(RAID0)). 3 To compare ArckFS against file systems
that do not considerthe Optane characteristics discussed
in §4.5, we also evaluate ArckFS on a single NUMA node
without opportunistic delegation (ArckFS-no-dele).
Workload. Our workloads cover a wide range of file sys-
tem use cases. For microbenchmarks, we use the popular
fio [8] and FxMark [39] to evaluate latency, throughput,
andmulticore scalability, focusing on both data andmetadata
operations. We configure fio to let each thread access a 1GB
private file. We use Webserver, Fileserver, Webproxy, and
Varmail in Filebench [7] and LevelDB as macrobenchmarks.
Limitations. We test ArckFS’ crash consistency with unit
tests during development but do not evaluate it with testing
frameworks such as Chipmunk [36]. We cannot run Strata
beyond one thread (and thus only show its results in §6.2).
We do not include ZoFS [23] and KucoFS [20] due to no source
code access. Despite our best efforts, we are unable to run
Aerie [46] and ctFS [38] with the provided configurations.

6.2 Single thread performance

Figure 5 shows the performance of common file system op-
erations with a single thread. Due to space limitations, we
present NOVA and SplitFS for data operations, represent-
ing the the best-performant kernel and userspace file sys-
tems, respectively. Similarly, we present NOVA and Strata
3Other evaluated NVM file systems cannot operate on a Linux RAID.

0

1

2

3

4

read write
0

15

30

45

60

read write

0

1

2

3

4

open
0

0.3

0.6

0.9

1.2

create delete

Th
ro
ug

hp
ut

(G
iB
/s
)

NOVA

SplitFS

(a) 4KB data

OdinFS

ArckFS-nd

(b) 2MB data

Th
ro
ug

hp
ut

(o
ps
/𝜇
s)

Strata

(c) Read metadata

ArckFS

(d) Write metadata

Figure 5. Single thread performance of the evaluated file systems.

for metadata operations. We present OdinFS’ data opera-
tion results to show the advantages of direct NVM access in
ArckFS. Since small NVM accesses are not delegated (§4.5),
ArckFS-no-dele performs similarly toArckFS for metadata
operations and is thus omitted.

With the 4KB access size, SplitFS and ArckFS-no-dele
outperform NOVA by 9% – 31% due to direct NVM ac-
cess. The performance difference between SplitFS and
ArckFS-no-dele is due to different implementations of
memcpy. Opportunistic delegation introduces the overhead
of striping data across NVM nodes and the communica-
tion overhead. As a result, ArckFS is 21% slower than
ArckFS-no-dele but still outperforms NOVA by around 6%.

With the 2MB access size, the advantage of direct NVM
access is minimal since the data copy time dominates. OdinFS
and ArckFS parallelize data access with opportunistic dele-
gation and thus performmuch better than others. In this case,
since application threads only need to send requests to dele-
gation threads (instead of performing data copy), avoiding
kernel trapping brings a significant advantage. In summary,
ArckFS outperforms others by 3.1× to 25× and 2.0× to 15×
for 2M-read and 2M-write, respectively.
Workloads for metadata performance include open and

close a file in a five-depth directory, create an empty file,
delete all the empty files under one directory. ArckFS’s
performance advantage comes from both direct NVM ac-
cess and efficient data structures (§4.2). Taking create as an
example, we find NOVA and Strata spend at least 42% and
44.5% of the time in VFS and digestion, respectively. Besides
that, the rest of the performance difference is due to the data
structure design. For example, with our workload, we find
the index data structures in NOVA (radix tree) are slower than
ArckFS’s hash table. As a result, for open, create, delete
ArckFS outperforms others by 1.6× to 5.6×, 3.3× to 5.3×,
and 7.4× to 9.4×, respectively.
Summary. ArckFS outperforms due to direct access (for
both data and metadata operations), opportunistic delega-
tion (for data operations), and efficient data structures (for
metadata operations).

0

8

16

24

32
1 2 4 8 16 28

0

4

8

12

16

1 2 4 8 16 28

0

8

16

24

32

1 2 4 8 16 28

0

3

6

9

12
1 2 4 8 16 28

0

40

80

120

160

1 2 4 8 16 28 56 84 11
2

14
0

16
8

19
6

22
4

0

15

30

45

60

1 2 4 8 16 28 56 84 11
2

14
0

16
8

19
6

22
4

0

50

100

150

200

1 2 4 8 16 28 56 84 11
2

14
0

16
8

19
6

22
4

0

20

40

60

80

1 2 4 8 16 28 56 84 11
2

14
0

16
8

19
6

22
4

Th
ro
ug

hp
ut

(G
iB
/s
)

ext4

PMFS

NOVA

WineFS

(a) 4KB read: 1 NUMA node

SplitFS

ArckFS-no-dele

(b) 4KB write: 1 NUMA node

Th
ro
ug

hp
ut

(G
iB
/s
)

(c) 2MB read: 1 NUMA node (d) 2MB write: 1 NUMA node

Th
ro
ug

hp
ut

(G
iB
/s
) ext4(RAID0)

(e) 4KB read: 8 NUMA nodes

OdinFS

ArckFS

(f) 4KB write: 8 NUMA nodes

Th
ro
ug

hp
ut

(G
iB
/s
)

threads

(g) 2MB read: 8 NUMA nodes

threads

(h) 2MB write: 8 NUMA nodes

Figure 6. Throughput of the evaluated file systems with one and
eight NUMA nodes. ArckFS follows OdinFS’s design to scale NVM
performance and outperforms OdinFS with direct NVM access.

6.3 Data operation performance

Figure 6 shows the throughput of each file system with one
and eight NUMA nodes evaluated with fio. With one NUMA
node, for 4KB read and write, ArckFS-no-dele outperforms
other file systems by 10% – 12% due to direct access. For
2MB read and write, all the evaluated file systems perform
similarly. The throughput drop is due to excessive concurrent
accesses (§4.5).
With eight NUMA nodes, for 4KB-read and 4KB-write,

when the thread count is low,ArckFS (and OdinFS) performs
similarly or worse than other file systems (§6.2). However,
OdinFS and ArckFS can scale to 224 threads because they
employ opportunistic delegation to preserve NVM perfor-
mance (§4.5). ArckFS further outperforms OdinFS due to
direct NVM access. With 224 threads, ArckFS outperform
OdinFS by up to 1.3× and other file systems by up to 22×.
For 2MB-read and 2MB-write, since OdinFS and ArckFS

parallelize NVM access (§6.2), they constantly outperform
other file systems. ext4(RAID0) also scales 2MB-read because

Name Description

DWTL Reduces the size of a private by 4K.
MRP(L/M/H) Open a (private/random/same) file in five-depth dirs.
MRD(L/M) Enumerate files of a (private/shared) directory.
MWC(L/M) Create an empty file in a (privte/shared) dir.
MWU(L/M) Unlink an empty file in a (private/shared) dir.
MWRL Rename a private file in a private dir.
MWRM Move a private file to a shared dir.

Table 2. Summary of FxMark’s metadata microbenchmarks.

it reduces the degree of concurrent access to NVM and re-
mote NVM reads incurs lower overhead than writes ([55]).
ext4(RAID0) does not scale 4KB-read due to a scalability
bottleneck. When the thread count increases, the NVM band-
width becomes the performance bottleneck and OdinFS starts
to catch up with ArckFS. With 224 threads, ArckFS outper-
forms evaluated file systems by 1.1× to 25×, and up to 15×
for 2MB-read and 2MB-write, respectively.
Summary. ArckFS follows OdinFS’s datapath design to
scale NVM performance for both read and write operations.
ArckFS further outperforms OdinFSwith direct NVM access.

6.4 Scalability

We evaluate file system scalability (i.e., performance with
increasing number of threads) using the FxMark benchmark
suite. Each benchmark in FxMark creates multiple threads
and each thread repeats the same operation. Table 2 summa-
rizes FxMark’s metadata benchmarks.
Data operation scalability. Due to space limitations, we
omit the figure of FxMark’s data microbenchmarks. Except
ArckFS and OdinFS, only PMFS and NOVA scale one workload:
DRBL. ArckFS and OdinFS scale due to opportunistic delega-
tion, fine-grained file access (§4.2), per-CPU data structures,
and advanced lock design (§4.5).ArckFS further outperforms
OdinFS with direct NVM access. As a result, ArckFS scales
linearly in all the read-dominated workloads and maintains
the maximal throughput in all the write-dominated work-
loads, up to 224 threads. In summary, ArckFS outperforms
OdinFS by 3.2× and others by up to 850×, respectively.
Metadata operation scalability. Figure 7 presents the scal-
ability of metadata operations. Essentially, for all the other
evaluated file systems, VFS decides their scalability. Specifi-
cally, most other file systems can only scale MRPL and MRDL
since the scalability bottlenecks in VFS (e.g., coarse locks on
directory cache, inode cache, directory inode and the global
rename lock) prevent scaling other microbenchmarks [39].
Direct NVM access allows ArckFS to avoid the scalabil-

ity bottleneck in the VFS. Furthermore, ArckFS scales due
to its scalable data structures and lock design (§4.2, §4.5).
Hence, for DWTL and all the read-dominated workloads, Ar-
ckFS scales linearly. Specifically, for microbenchmarks per-
forming open and enumerate, at 224 threads, ArckFS outper-
forms others by 5.4× to 334× and 7.4× to 25×, respectively.

0

300

600

900

1200

0 50 100 150 200 250
0

230

460

690

920

0 50 100 150 200 250
0

65

130

195

260

0 50 100 150 200 250
0

65

130

195

260

0 50 100 150 200 250

0

1500

3000

4500

6000

0 50 100 150 200 250
0

50

100

150

200

0 50 100 150 200 250
0

1

2

3

4

0 50 100 150 200 250
0

1

2

3

4

0 50 100 150 200 250

0

5

10

15

20

0 50 100 150 200 250
0

1.5

3

4.5

6

0 50 100 150 200 250
0

5

10

15

20

0 50 100 150 200 250
0

1

2

3

4

0 50 100 150 200 250

op
s/
𝜇
s

ext4

PMFS

NOVA

DWTL

ext4(RAID0)

MRPL

WineFS

SplitFS

OdinFS

MRPM

ArckFS
MRPH

op
s/
𝜇
s

MRDL MRDM MWCL MWCM

op
s/
𝜇
s

threads

MWUL

threads

MWUM

threads

MWRL

threads

MWRM

Figure 7. Metadata scalability of the evaluated file systems. ArckFS scales thanks to kernel bypassing and scalable design. Results with one
NUMA node are similar to those under 28 threads and thus omitted.

For MWCL and MWUL, ArckFS does not scale linearly due to
excessive concurrent NVM access; these small accesses are
not delegated (§4.5). This does not affect MWRL since ArckFS
writes much less NVM data for it. The scalability of MWCM,
MWUM, and MWRM drops due to the contention in ArckFS’s di-
rectory hash tables. Furthermore, MWCM and MWRM also contend
on logging tails and the index tail (§4.2). In summary, for
microbenchmarks that perform create, unlink, and rename,
at 224 threads, ArckFS outperforms by 2.3× to 21.2×, 8.9×
to 32.7×, 16.2× to 36.4×, respectively.
Summary. Direct NVM access allows ArckFS to bypass
the scalability bottleneck in VFS. Leveraging this, the careful
data structure design in ArckFS makes it scale significantly
better than existing NVM file systems.

6.5 Metadata Integrity and Sharing Cost

Detecting and recovering from metadata corruption.

We design tests emulating both malicious LibFSes and buggy
LibFSes to stress the metadata integrity enforcement design
in ArckFS (§4.3). Specifically, we handcrafted eleven attacks
performed by a malicious LibFS corrupting metadata, some
mentioned in §2.3.2. For example, the malicious LibFS (1)
modifies pointers in index pages to point to DRAM data;
(2) removes a non-empty directory; (3) creates file names
containing “/” to trick another LibFS into accessing a wrong
file; (4) causes loops within a file’s index pages.
To emulate a buggy LibFS, for each integrity checks in

the verifier, we create an automated script to corrupt the
relevant metadata with, say, a random value. We also run

NOVA ArckFS ArckFS-trust-group

4KB-write 2MB 1.92GiB/s 1.90GiB/s 1.95GiB/s
4KB-write 1GB 1.91GiB/s 0.25GiB/s 1.95GiB/s
Create 10 8.2𝜇s 7.8𝜇s 1.5𝜇s
Create 100 8.4𝜇s 32.7𝜇s 1.6𝜇s

Table 3. Performance of ArckFS when two threads concurrently
update the same file.

different scripts together to cause more complex corruption.
In total, we cause 134 corruption scenarios.

In all the test cases, the integrity verifier can detect the cor-
ruption, and the kernel controller can restore the corrupted
file to a consistent state.
Sharing cost. When multiple untrusted applications con-
currently update a file, ArckFS incurs a sharing cost
caused by file mapping and unmapping, integrity verifica-
tion, and rebuilding the auxiliary state. We evaluate the
sharing cost with (1) two applications writing 4KB to a
2MB (4KB-write 2MB) or a 1GB file (4KB-write 1GB) and (2)
two applications creating empty files in a directory that con-
tains 10 (create-10) or 100 files (create-100).
Table 3 shows the results. When the file/directory size

is small, the sharing cost is negligible (< 5𝜇s) for write
and modest for create, leading to similar performance as
NOVA. The overhead increases when the file/directory size
grows. Figure 8 shows the breakdown of the overhead. Specif-
ically, for 4KB-write 1GB, mapping and unmapping files,
where each iteration takes 670ms on average, contribute
to 99% of the overhead. With ArckFS’s 100ms lease time,
this results in an overhead of 7.8×. For create, we stress

Name # Files Avg. file size I/O size (r/w) R/W

Fileserver 10K 2MB 1MB / 512KB 1:2
Webserver 20K 4MB 1MB / 256KB 10:1
Webproxy 100K 512MB 1MB / 16KB 5:1
Varmail 100K 16KB 1MB / 16KB 1:1

Table 4. Filebench workloads configurations, which aim to cover a
wide range of file system use cases.

the sharing overhead by making applications unmap a file
after each operation. Thus, in this case, the overhead of
verification (300𝜇𝑠 , 81%), and rebuilding the auxiliary state
dominates (12%), leading to an overhead of 20.4×. Lever-
aging the trust group (§3.2) can eliminate the overhead.

0

0.25

0.5

0.75

1

4KB
-wri

te 1G

crea
te-1

00

Ra
tio

Map
Unmap
Verifier

Aux. state

Figure 8. Breakdown of ArckFS’
sharing cost.

Summary. ArckFS can
effectively enforce meta-
data integrity in the
presence of buggy or
malicious LibFSes. Con-
current write access to
a shared file from un-
trusted applications in-
cur sharing cost for Ar-
ckFS. If applicable, a
user can use the trust
group to avoid it.

6.6 Macrobenchmarks and Real-World Applications

Filebench. We use four Filebench benchmarks: Fileserver,
Webserver, Webproxy, and Varmail with configurations
shown in Table 4. We aim to cover a wide range of file sys-
tem use cases with such configurations. Specifically, File-
server and Webserver are data-intensive, performing large
file writes and reads, respectively. Webproxy stresses both
data and metadata operations, performing small file reads.
Varmail is metadata-intensive, performing small file writes.
We find that Filebench introduces a severe scalability bot-
tleneck (by locking the whole fileset to choose a file for
operations like open) for Webproxy and Varmail. We bypass
it by assigning a private fileset to each thread. However, we
cannot increase the fileset count beyond sixteen due to a bug
in Filebench. Due to time limitations, we evaluate Webproxy
and Varmail with only up to sixteen threads.
Figure 9 shows the result. For Fileserver and Webserver,

with one NUMA node, all the file systems perform similarly.
With eight NUMA nodes, ArckFS outperforms others by
1.1× to 27.3×, and 1.2× to 4.1×, respectively. These results
are consistent with results in §6.3. Again, ArckFS and
OdinFS outperform thanks to their datapath design that
maximizes NVM performance, and ArckFS outperforms
OdinFS due to direct NVM access and efficient metadata
path (especially in Websever).

0

4

8

12

16

1 2 4 8 16 28

0

10

20

30

40

1 2 4 8 16 28

0

60

120

180

240

1 2 4 8 16 28 56 84 11
2

14
0

16
8

19
6

22
4

0

35

70

105

140

1 2 4 8 16 28 56 84 11
2

14
0

16
8

19
6

22
4

0

600

1200

1800

2400

1 2 4 8 16

0

500

1000

1500

2000

1 2 4 8 16

KO
ps
/s
ec

ext4

PMFS

(a) Fileserver: 1 NUMA node

NOVA

WineFS

SplitFS

ArckFS-nd

(b) Webserver: 1 NUMA node

KO
ps
/s
ec

ext4-RAID0

(c) Fileserver: 8 NUMA nodes

OdinFS

(d) Webserver: 8 NUMA nodes

KO
ps
/s
ec

threads

ArckFS

(e) Webproxy: 8 NUMA nodes

threads

(f) Varmail: 8 NUMA nodes

Figure 9. Filebench results.ArckFS consistently outperforms other
evaluated file systems in various workloads. The one NUMA node
results of Webproxy and Varmail are similar to those with eight
NUMA nodes and thus omitted.

Throughput (ops/ms) ext4 NOVA WineFS ArckFS ArckFS-nd

Fill 100K 1.23 2.53 2.60 3.81 2.71
Fill seq 135 210 239 419 561
Fill sync 17 189 211 291 378
Fill random 123 196 219 343 452
Read random 93 131 142 144 174
Delete random 148 217 245 494 603

Table 5. Performance of LevelDB with the evaluated file systems.
ext4(RAID0) always underperforms ext4, and is thus omitted. We
cannot evaluate other file systems since they do not implement
(functional) mmap().

Due to direct NVM access and efficient metadata opera-
tions, ArckFS significantly outperforms others, including
OdinFS, with workloads performing many metadata opera-
tions and small file accesses. Specifically, for Webproxy and
Varmail, ArckFS outperforms others by 2.2× to 8.0× and
2.4× to 34.2×, respectively.
LevelDB. We evaluate LevelDB by running db_bench with
the default setup; db_bench runs with one thread, the value
size is 100 bytes, and there are one million objects in the
database. As shown in Table 5, ArckFS outperforms all the
evaluated file systems across all the workloads. ArckFS out-
performs the second-best performant file system: WineFS, by

0

500

1000

1500

2000

Webproxy
0

400

800

1200

1600

Varmail

Ko
ps
/s
ec

ext4

PMFS

NOVA

ext4(RAID0)

KVFS

WineFS

OdinFS

ArckFS
FPFS

Figure 10. Customized file systems enabled by Trio: KVFS and
FPFS further outperform ArckFS.

up to 3.1× and ext4 by 1.5× to 17×. With Fill100K, ArckFS-
nd is 29% slower than ArckFS. This is because Fill100K
performs large file writes, and ArckFS benefits from the ac-
cess parallelization enabled by the opportunistic delegation
(§4.5). On the other hand, other workloads mostly perform
small file accesses, where the opportunistic delegation incurs
the striping and communication overhead (§6.2). As a result,
ArckFS-nd outperforms ArckFS by 21% to 34%.
Customization. We design two customized file systems:
KVFS and FPFS (§5) using the Trio architecture. Figure 10
demonstrates the performance benefits of customization.
We extend Filebench with a key-value interface to support
KVFS. We create a directory depth of 20 in Varmail to stress
path resolution. Both workloads run with eight threads. In
Webproxy, KVFS avoids managing file descriptors and file
indexes, further outperforming ArckFS by 1.3× and others
by 2.9×. In Varmail, FPFS supports full path indexing and
thus further outperforms ArckFS by 1.2× and others by 21×.
Summary. ArckFS consistently outperforms other NVM
file systems in macrobenchmarks that cover a wide range of
file system use cases. The flexible customization enabled by
Trio can further improve application performance.

7 Other related work

Trio follows Exokernel [25, 30] to provide applications with
secure direct access to storage devices and a minimal abstrac-
tion for customization. Unlike Trio, Exokernel assumes a
conventional disk and thus still requires kernel mediation for
disk accesses. Furthermore, Exokernel cannot enable sharing
among customized LibFSes and cannot enforce the metadata
integrity of a POSIX-like file system. Arrakis [41] also as-
sumes a conventional disk, leverages hardware extension to
partition the disk statically, and assigns applications a por-
tion of the storage device for direct access. Thus, accessing
a file in another application’s region requires inter-process
communication. Trio resolves the four way tension among
direct access, customization, sharing, and security on the
emerging NVM storage device.
State separation. ScaleFS [18] decouples an in-memory
file system from an on-disk file system using operation logs.
Unlike ScaleFS, Trio only has a single layer of file systems:

LibFSes and LibFSes directly accesses NVM, thereby avoiding
the disadvantages of a log-based design (§2.3.1). NOVA [49]
and Flatstore [19] maintain logs on NVM and maintain in-
dexes in DRAM to improve performance. Trio generalizes
this design philosophy, applies it to userspace NVM file sys-
tems, and solves different problems.
Verifying file system consistency. SQCK [28] is a file
system checker based on SQL to achieve simplicity and better
functionality than e2fsck. Trio’s integrity verifier performs
similarly to Recon [26], which pioneers enforcing metadata
integrity online and locally.

8 Conclusion

This paper presents Trio, a new userspace NVM file system
architecture that unleashes its performance potential and
ensures metadata integrity. By separating the file system
state into a single commonly shared core state and private
auxiliary state in each component, Trio simultaneously al-
lows LibFSes to directly access NVM, applications to flexibly
customize its LibFSes without special privileges or affecting
other applications, and untrusted applications can securely
share a file with its private LibFSes. Leveraging Trio, we de-
sign ArckFS, a generic POSIX-like file system with a careful
design to achieve low latency, high throughput, and excel-
lent scalability for both data and metadata operations. Our
extensive evaluation shows that ArckFS constantly outper-
forms existing NVM file systems by several times to orders
of magnitude, while the customized file systems enabled by
Trio further outperform ArckFS. Our artifact is publicly
available at https://github.com/vmexit/trio-sosp23-ae.

Acknowledgments

We sincerely thank our shepherd, Haryadi Gunawi, and the
anonymous reviewers for their insightful feedback. We also
thank Yuval Tamir and Changwoo Min for their helpful dis-
cussions. Zhang and Kannan were supported by funding
from NSF grants CNS-1910593 and CNS-1730043 (experi-
mental platform).

References

[1] 3D XPoint: A Breakthrough in Non-Volatile Memory Technol-
ogy. https://www.intel.com/content/www/us/en/architecture-and-
technology/intel-micron-3d-xpoint-webcast.html.

[2] Compute Express Link 2.0 White Paper. https://
b373eaf2-67af-4a29-b28c-3aae9e644f30.filesusr.com/ugd/
0c141814c5283e7f3e40f9b2955c7d0f60bebe.pdf.

[3] Compute Express Link: The Breakthrough CPU-to-Device In-
terconnect. https://www.computeexpresslink.org/download-the-
specification.

[4] dm-stripe. https://www.kernel.org/doc/html/latest/admin-guide/
device-mapper/striped.html.

[5] Exim Internet Mailer. https://www.exim.org/.
[6] ext4(5) — Linux manual page. https://man7.org/linux/man-pages/

man5/ext4.5.html.

https://github.com/vmexit/trio-sosp23-ae
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-micron-3d-xpoint-webcast.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-micron-3d-xpoint-webcast.html
https://b373eaf2-67af-4a29-b28c-3aae9e644f30.filesusr.com/ugd/0c1418_14c5283e7f3e40f9b2955c7d0f60bebe.pdf
https://b373eaf2-67af-4a29-b28c-3aae9e644f30.filesusr.com/ugd/0c1418_14c5283e7f3e40f9b2955c7d0f60bebe.pdf
https://b373eaf2-67af-4a29-b28c-3aae9e644f30.filesusr.com/ugd/0c1418_14c5283e7f3e40f9b2955c7d0f60bebe.pdf
https://www.computeexpresslink.org/download-the-specification
https://www.computeexpresslink.org/download-the-specification
https://www.kernel.org/doc/html/latest/admin-guide/device-mapper/striped.html
https://www.kernel.org/doc/html/latest/admin-guide/device-mapper/striped.html
https://www.exim.org/
https://man7.org/linux/man-pages/man5/ext4.5.html
https://man7.org/linux/man-pages/man5/ext4.5.html

[7] Filebench - A Model Based File System Workload Generator . https:
//github.com/filebench/filebench.

[8] Flexible I/O Tester. https://github.com/axboe/fio.
[9] fsck.ext4(8) - Linux man page. https://linux.die.net/man/8/fsck.ext4.
[10] HPE Persistent Memory. https://www.hpe.com/us/en/servers/

persistent-memory.html.
[11] Intel Optane Persistent Memory. https://www.intel.com/content/

www/us/en/products/docs/memory-storage/optane-persistent-
memory/overview.html.

[12] Last week Intel killed Optane. Today, Kioxia and Everspin announced
comparable tech: Rumors of storage-class memory’s demise may
have been premature. https://www.theregister.com/2022/08/02/
kioxiaeverspinpersistentmemory/.

[13] Memory Protection Keys. https://www.kernel.org/doc/html/latest/
core-api/protection-keys.html.

[14] Samsung Memory-Semantic SSD. https://news.samsung.com/
global/samsung-electronics-unveils-far-reaching-next-generation-
memory-solutions-at-flash-memory-summit-2022.

[15] Small Files, Big Foils: Addressing the Associated Metadata and Appli-
cation Challenges. https://blog.cloudera.com/small-files-big-foils/.

[16] The Challenge in Big Data is Small Files. https://blog.min.io/challenge-
big-data-small-files/.

[17] util-linux. https://github.com/util-linux/util-linux.
[18] Srivatsa S. Bhat, Rasha Eqbal, Austin T. Clements, M. Frans Kaashoek,

and Nickolai Zeldovich. Scaling a file system to many cores using an
operation log. In Proceedings of the 26th ACM Symposium on Operating
Systems Principles (SOSP), Shanghai, China, October 2017.

[19] Youmin Chen, Youyou Lu, Fan Yang, QingWang, YangWang, and Jiwu
Shu. FlatStore: An Efficient Log-Structured Key-Value Storage Engine
for Persistent Memory. In Proceedings of the 25th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), Lausanne, Switzerland, March 2020.

[20] Youmin Chen, Youyou Lu, Bohong Zhu, Andrea C. Arpaci-Dusseau,
Remzi H. Arpaci-Dusseau, and Jiwu Shu. Scalable Persistent Memory
File System with Kernel-Userspace Collaboration. In Proceedings of
the 19th USENIX Conference on File and Storage Technologies (FAST),
Virtual, February 2021.

[21] Björn Daase, Lars Jonas Bollmeier, Lawrence Benson, and Tilmann
Rabl. Maximizing Persistent Memory Bandwidth Utilization for OLAP
Workloads. In Proceedings of the 2021 ACM SIGMOD/PODS Conference,
Xi’an, Shaanxi, China, May 2021.

[22] Dave Dice and Alex Kogan. BRAVO: Biased Locking for Reader-Writer
Locks. In Proceedings of the 2019 USENIX Annual Technical Conference
(ATC), Renton, WA, July 2019.

[23] Mingkai Dong, Heng Bu, Jifei Yi, Benchao Dong, and Haibo Chen.
Performance and Protection in the ZoFS User-space NVM File Sys-
tem. In Proceedings of the 27th ACM Symposium on Operating Systems
Principles (SOSP), Ontario, Canada, October 2019.

[24] Subramanya R Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip
Lantz, Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson. System
Software for Persistent Memory. In Proceedings of the 9th European
Conference on Computer Systems (EuroSys), Amsterdam, The Nether-
lands, April 2014.

[25] Dawson R. Engler, M. Frans Kaashoek, and James O’Toole J. Exoker-
nel: an operating system architecture for application-level resource
management. In Proceedings of the 15th ACM Symposium on Operating
Systems Principles (SOSP), Copper Mountain, CO, December 1995.

[26] Daniel Fryer, Kuei Sun, Rahat Mahmood, TingHao Cheng, Shaun Ben-
jamin, Ashvin Goel, and Angela Demke Brown. Recon: Verifying File
System Consistency at Runtime. In Proceedings of the 10th USENIX Con-
ference on File and Storage Technologies (FAST), San JOSE, CA, February
2012.

[27] Bill Gervasi. A Persistent CXL Memory Module with DRAM
Performance. In Storage Developer Conference (SDC). SNIA,
2022. https://storagedeveloper.org/conference/agenda/sessions/
persistent-cxl-memory-module-dram-performance.

[28] Haryadi S. Gunawi, Abhishek Rajimwale, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. SQCK: A Declarative File System
Checker. In Proceedings of the 8th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), San Diego, CA, December
2008.

[29] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amir-
samanMemaripour, Yun Joon Soh, ZixuanWang, Yi Xu, Subramanya R.
Dulloor, Jishen Zhao, and Steven Swanson. Basic Performance Mea-
surements of the Intel Optane DC Persistent Memory Module. arXiv
preprint arXiv:1903.05714, 2019.

[30] M. Frans Kaashoek, Dawson R. Engler, Gregory R. Ganger, Hector M.
Briceno, Russell Hunt, David Mazieres, Thomas Pinckney, Robert
Grimm, John Jannotti, and Kenneth Mackenzie. Exokernel: an op-
erating system architecture for application-level resource manage-
ment. In Proceedings of the 16th ACM Symposium on Operating Systems
Principles (SOSP), Saint-Malo, France, October 1997.

[31] Rohan Kadekodi, Saurabh Kadekodi, Soujanya Ponnapalli, Harshad
Shirwadkar, Gregory R. Ganger, Aasheesh Kolli, and Vijay Chi-
dambaram. WineFS: a hugepage-aware file system for persistent
memory that ages gracefully. In Proceedings of the 28th ACM Sympo-
sium on Operating Systems Principles (SOSP), Virtual, October 2021.

[32] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap, Taesoo Kim,
Aasheesh Kolli, and Vijay Chidambaram. SplitFS: Reducing Software
Overhead in File Systems for Persistent Memory. In Proceedings of the
27th ACM Symposium on Operating Systems Principles (SOSP), Ontario,
Canada, October 2019.

[33] Kostis Kaffes, Jack Tigar Humphries, David Mazières, and Christos
Kozyrakis. Syrup: User-Defined Scheduling Across the Stack. In
Proceedings of the 28th ACM Symposium on Operating Systems Principles
(SOSP), Virtual, October 2021.

[34] Rajat Kateja, Anirudh Badam, Sriram Govindan, Bikash Sharma, and
Greg Ganger. Viyojit: Decoupling battery and dram capacities for
battery-backed dram. In Proceedings of the 44th ACM/IEEE International
Symposium on Computer Architecture (ISCA), Toronto, Canada, June
2018.

[35] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett
Witchel, and Thomas Anderson. Strata: A Cross Media File System. In
Proceedings of the 26th ACM Symposium on Operating Systems Principles
(SOSP), Shanghai, China, October 2017.

[36] Hayley LeBlanc, Shankara Pailoor, Om Saran K R E, Isil Dillig, James
Bornholt, and Vijay Chidambaram. Chipmunk: Investigating Crash-
Consistency in Persistent-Memory File Systems. In Proceedings of the
18th European Conference on Computer Systems (EuroSys), Rome, Italy,
May 2023.

[37] Changman Lee, Dongho Sim, Joo-Young Hwang, and Sangyeun Cho.
F2FS: A New File System for Flash Storage. In Proceedings of the 13th
USENIX Conference on File and Storage Technologies (FAST), Santa Clara,
CA, February 2015.

[38] Ruibin Li, Xiang Ren, Xu Zhao, Siwei He, Michael Stumm, and Ding
Yuan. ctFS: Replacing File Indexing with Hardware Memory Trans-
lation through Contiguous File Allocation for Persistent Memory. In

https://github.com/filebench/filebench
https://github.com/filebench/filebench
https://github.com/axboe/fio
https://linux.die.net/man/8/fsck.ext4
https://www.hpe.com/us/en/servers/persistent-memory.html
https://www.hpe.com/us/en/servers/persistent-memory.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/overview.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/overview.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/overview.html
https://www.theregister.com/2022/08/02/kioxia_everspin_persistent_memory/
https://www.theregister.com/2022/08/02/kioxia_everspin_persistent_memory/
https://www.kernel.org/doc/html/latest/core-api/protection-keys.html
https://www.kernel.org/doc/html/latest/core-api/protection-keys.html
https://news.samsung.com/global/samsung-electronics-unveils-far-reaching-next-generation-memory-solutions-at-flash-memory-summit-2022
https://news.samsung.com/global/samsung-electronics-unveils-far-reaching-next-generation-memory-solutions-at-flash-memory-summit-2022
https://news.samsung.com/global/samsung-electronics-unveils-far-reaching-next-generation-memory-solutions-at-flash-memory-summit-2022
https://blog.cloudera.com/small-files-big-foils/
https://blog.min.io/challenge-big-data-small-files/
https://blog.min.io/challenge-big-data-small-files/
https://github.com/util-linux/util-linux
https://storagedeveloper.org/conference/agenda/sessions/persistent-cxl-memory-module-dram-performance
https://storagedeveloper.org/conference/agenda/sessions/persistent-cxl-memory-module-dram-performance

Proceedings of the 20th USENIX Conference on File and Storage Tech-
nologies (FAST), Santa Clara, CA, February 2022.

[39] Changwoo Min, Sanidhya Kashyap, Steffen Maass, Woonhak Kang,
and Taesoo Kim. Understanding Manycore Scalability of File Systems.
In Proceedings of the 2016 USENIX Annual Technical Conference (ATC),
Denver, CO, June 2016.

[40] Sujin Park, Diyu Zhou, Yuchen Qian, Irina Calciu, Taesoo Kim, and
Sanidhya Kashyap. Application-Informed Kernel Synchronization
Primitives. In Proceedings of the 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), Carlsbad, CA, July 2022.

[41] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, DougWoos, Arvind
Krishnamurthy, Thomas Anderson, and Timothy Roscoe. Arrakis: The
Operating System is the Control Plane. In Proceedings of the 11th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI), Broomfield, Colorado, October 2014.

[42] Suchitra Raman and StevenMcCanne. AModel, Analysis, and Protocol
Framework for Soft State-based Communication. In Proceedings of the
10th ACM SIGCOMM, Cambridge, MA, August–September 1999.

[43] Yujie Ren, Changwoo Min, and Sudarsun Kannan. CrossFS: A Cross-
layered Direct-Access File System. In Proceedings of the 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
Virtual, November 2020.

[44] Mendel Rosenblum and John K. Ousterhout. The Design and Imple-
mentation of a Log-Structured File System. ACM Transactions on
Computer Systems, 1992.

[45] Chia-Che Tsai, Yang Zhan, Jayashree Reddy, Yizheng Jiao, Tao Zhang,
and Donald E. Porter. How to Get More Value From Your File Sys-
tem Directory Cache. In Proceedings of the 25th ACM Symposium on
Operating Systems Principles (SOSP), Monterey, CA, October 2015.

[46] Haris Volos, Sanketh Nalli, Sankarlingam Panneerselvam,
Venkatanathan Varadarajan, Prashant Saxena, and Michael M.
Swift. Aerie: Flexible File-System Interfaces to Storage-Class Memory.
In Proceedings of the 9th European Conference on Computer Systems
(EuroSys), Amsterdam, The Netherlands, April 2014.

[47] Zixuan Wang, Xiao Liu, Jian Yang, Theodore Michailidis, Steven Swan-
son, and Jishen Zhao. Characterizing and Modeling Non-Volatile
Memory Systems. In Proceedings of the 53rd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO), Virtual, October
2020.

[48] Jian Xu, Juno Kim, Amirsaman Memaripour, and Steven Swanson.
Finding and Fixing Performance Pathologies in Persistent Memory
Software Stacks. In Proceedings of the 24th ACM International Confer-
ence on Architectural Support for Programming Languages and Operat-
ing Systems (ASPLOS), Providence, RI, April 2019.

[49] Jian Xu and Steven Swanson. NOVA: A Log-structured File System
for Hybrid Volatile/Non-volatile Main Memories. In Proceedings of the
14th USENIX Conference on File and Storage Technologies (FAST), Santa
Clara, CA, February 2016.

[50] Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha Gangadhara-
iah, Amit Borase, Tamires Brito Da Silva, Steven Swanson, and Andy
Rudof. NOVA-Fortis: A Fault-Tolerant Non-Volatile Main Memory
File System. In Proceedings of the 26th ACM Symposium on Operating
Systems Principles (SOSP), Shanghai, China, October 2017.

[51] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and
Steven Swanson. An Empirical Guide to the Behavior and Use of Scal-
able Persistent Memory. In Proceedings of the 18th USENIX Conference
on File and Storage Technologies (FAST), Santa Clara, CA, February
2020.

[52] Suli Yang, Tyler Harter, Nishant Agrawal, Salini Selvaraj Kowsalya,
Anand Krishnamurthy, Samer Al-Kiswany, Rini T. Kaushik, Andrea C.

Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Split-level i/o schedul-
ing. In Proceedings of the 25th ACM Symposium on Operating Systems
Principles (SOSP), Monterey, CA, October 2015.

[53] Yang Zhan, Alex Conway, Yizheng Jiao, Eric Knorr, Michael A. Bender,
Martin Farach-Colton, William Jannen, Rob Johnson, Donald E. Porter,
and Jun Yuan. The Full Path to Full-Path Indexing. In Proceedings of
the 16th USENIX Conference on File and Storage Technologies (FAST),
Oakland, CA, February 2018.

[54] Shawn Zhong, Chenhao Ye, Guanzhou Hu, Suyan Qu, Andrea Arpaci-
Dusseau, Remzi Arpaci-Dusseau, and Michael Swift. MadFS: Per-File
virtualization for userspace persistent memory filesystems. In Proceed-
ings of the 21th USENIX Conference on File and Storage Technologies
(FAST), Santa Clara, CA, February 2023.

[55] Diyu Zhou, Yuchen Qian, Vishal Gupta, Zhifei Yang, Changwoo Min,
and Sanidhya Kashyap. Odinfs: Scaling PM performance with Oppor-
tunistic Delegation. In Proceedings of the 16th USENIX Symposium on
Operating Systems Design and Implementation (OSDI), Carlsbad, CA,
July 2022.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 NVM Technologies
	2.2 File System Customization
	2.3 Userspace NVM File Systems
	2.4 Lessons Learned from Prior Designs

	3 The Trio Architecture
	3.1 Trio Design Goals and Challenges
	3.2 Trio Overview
	3.3 Discussion and Limitations

	4 ArckFS: POSIX-like FS Using Trio
	4.1 Core state
	4.2 Handling File System Operations with LibFS
	4.3 Enforcing Metadata Integrity upon Sharing
	4.4 Crash Consistency
	4.5 Implementation

	5 File System Customization
	6 Evaluation
	6.1 Evaluation setup
	6.2 Single thread performance
	6.3 Data operation performance
	6.4 Scalability
	6.5 Metadata Integrity and Sharing Cost
	6.6 Macrobenchmarks and Real-World Applications

	7 Other related work
	8 Conclusion
	References

