
Monarch: A Fuzzing Framework
for Distributed File Systems

Tao Lyu Liyi Zhang Zhiyao Feng Yueyang Pan Yujie Ren

Meng Xu Mathias Payer Sanidhya Kashyap

DFSes are critical infrastructure

2
1. How Amazon EFS works 2. Building Meta’s GenAI Infrastructure

…

Serverless1 Machine Learning
Model Training2

High Performance
Computing

https://docs.aws.amazon.com/efs/latest/ug/how-it-works.html
https://engineering.fb.com/2024/03/12/data-center-engineering/building-metas-genai-infrastructure/

But DFSes are not reliable

3

11K Ceph bug reports

17K Lustre bug reports

Finding and fixing bugs in DFSes become important

High concurrency

Fault tolerance

Memory-unsafe languages

State-sharing across clients

Existing approaches to finding DFSes bugs

4

Manual expert effort

Limited test cases

Test suit

State explosion

Modist
SAMC

Verdi
Ironfleet

Manual expert effort

Mostly verify critical parts

Formal
Verification

Model
Checking

Regression
Testing

Any automatic and scalable bug-finding techniques?

Fuzzing: A practical and impactful approach

5
1. Syzbot/Syzkaller https://syzkaller.appspot.com/upstream/graph/found-bugs

● Linux kernel fuzzer, syzkaller, detects over 1K bugs every year1

● Specifically, more than 800 bugs in local file systems over the years

https://syzkaller.appspot.com/upstream/graph/found-bugs

How does fuzzing work?

6

Generator/
Mutator

Syscalls

Single-node
in-kernel LFSes

Crash consistency and
memory bug checker

Feedback

How does fuzzing work?

7

Generator/
Mutator

Syscalls

Single-node
in-kernel LFSes

Crash consistency and
memory bug checker

Feedback

Current LFS fuzzers are not applicable for DFSes

Missing pieces for fuzzing DFSes

8

Single-node and
in-kernel file system

Multi-node cross-kernel/userspace fuzzing
architecture

Syscalls Distributed faults as a testing input space

Representation of
single-kernel exe state

Representation of cross-node and
cross-kernel/userspace execution states

Crash consistency +
memory checker

A systematic DFS semantic checker

9

MONARCH
A distributed file system fuzzer

Worker
Workers

Monarch architecture

10

Controller

Node 1Node 1

Node N

W
orker N

Checker
DFS state

DFS
Server
/Client

Executor

Two-step test case

mutator

syscalls
faults

DFS execution states
representation

Worker
Workers

Monarch architecture

11

Controller

Node 1

Checker
DFS state

DFS
Server
/Client

Executor

Two-step test case

mutator

syscalls
faults

DFS execution states
representation

Node 1

Node N

W
orker N

Two-step test case mutator

12

Non-fault mode: Testing with file system syscalls only (e.g., open, read)

Fault mode: Testing with syscalls + injected faults

● Distributed faults → Network partitions, node crashes

● How to deterministically inject faults? → Synchronization primitives

● At which granularity to inject faults? → Syscall granularity

● When to inject faults? → After a test case triggers new execution state

● Syscall templates and mutation rules

Worker
Workers

Monarch architecture

20

Controller

Node 1

Checker
DFS state

DFS
Server
/Client

Executor

Two-step test case

mutator

syscalls
faults

DFS execution states
representation

Node 1

Node N

W
orker N

What are the semantic bugs in DFS?

21

● Semantic: DFS state transitions specified in the spec

○ Syscalls: sequential and concurrent

○ Syscalls + faults

DFS states X DFS states Y DFS states N

Transitions

Syscalls + FaultsSequential syscalls Concurrent syscalls

What are the semantic bugs in DFS?

22

● Semantic: DFS state transitions specified in the spec

○ Syscalls: sequential and concurrent

○ Syscalls + faults

● Semantic bugs: implementations violate the specified semantic

Transitions

DFS states X DFS states Y DFS states N

Syscalls + FaultsSequential syscalls Concurrent syscalls

Which semantic bug types are missing?

23

DFS states X DFS states Y

● Semantic: DFS state transitions specified in the spec

○ Syscalls: sequential and concurrent

○ Syscalls + faults

● Semantic bugs: implementations violate the specified semantic

Transitions

DFS states N

Syscalls + FaultsSequential syscalls Concurrent syscalls

DFS semantic checker: SYMSC

24

Syscalls
+ faults

β ∉ ∑Runtime info

SYMSC ∑: set of emulated oracle states

DFS β: collected runtime states

Emulate sequential syscall executions

25

Emulated states

Inode0.dents = [., A]
Inode1.dents = []

Inode1.xattr = [user.key:val]
…

mkdir A

setxattr A user.key:val

Sequential syscalls

● Emulate syscalls one by one according to the specification

But the spec does not specify semantics under concurrency and faults

How to emulate semantic under concurrency?

26

write 8KB write 4KB

Concurrent execution

fchmod

● Concurrency relation built from syscall’s start and end timestamp

Syscalls to atomic operations

27

● Syscalls are splitted into one or more atomic operations

write 4KB

write 4KB

Concurrent execution

fchmod
write 4KB

Serialize concurrent atomic operations

28

● Syscalls are splitted into one or more atomic operations

● Oracle states: emulate all interleavings among concurrent atomic operations

write 4KB

fchmod

write 4KB

write 4KB

write 4KB

fchmod

write 4KB

write 4KB

…

write 4KB

write 4KB

Concurrent execution

fchmod
write 4KB

Case study of a CephFS bug

29

inode.mode = X or Y

inode.mode = Y

stat1.mode = Y stat2.mode = Y

Runtime state Emulated states

open("A", O_CREAT|.., Y)

stat("A", stat2)
; stat2.mode = X

open("A", O_CREAT|..., X)

chmod("A", Y)

stat("A", stat1)
; stat1.mode=Y

Client 1 Client 2

Case study of a CephFS bug

30

inode.mode = X or Y

inode.mode = Y

stat1.mode = Y stat2.mode = Y

Runtime state Emulated states

open("A", O_CREAT|.., Y)

stat("A", stat2)
; stat2.mode = X

open("A", O_CREAT|..., X)

chmod("A", Y)

stat("A", stat1)
; stat1.mode=Y

Client 1 Client 2

What is the semantic under faults?

31

write(fd, "data", 4)

init_crash_fault

stop_crash_faultstop_fault

init_fault

What’s the semantic of a write under faults?

…
Client 1Server 3Server 2Server 1

Ti
m

el
in

e

Distributed file system nodes

What is the semantic under faults?

32

write(fd, "data", 4)

init_crash_fault

stop_crash_faultstop_fault

init_fault

…
Client 1Server 3Server 2Server 1

Ti
m

el
in

e

Distributed file system nodes

● Apply the original semantic if the DFS is available to this syscall

● Return errors otherwise

● Two 64-core machines

● Ran intermittently for two months on six targeted DFSes

Implementation and evaluation setup

33

How effective is Monarch in finding bugs?

34

DFS Memory bugs Semantic bugs

Lustre 8 0

GlusterFS 17 5

OrangeFS 3 0

BeeGFS 0 2

CephFS 4 1

NFS 8 0

Total 40 8

● Monarch found bugs in all DFSes and categories, with a total of 48 bugs

What are the characteristics of DFS bugs?

35

Bug exposure might depend on specific DFS configurations

Faults play a critical role in exposing these bugs

→ 14/40 memory bugs and 3/8 semantic bugs are exposed under faults

Vulnerable code is scattered in both servers and clients

→ 17 bugs (servers) vs 31 bugs (clients)

→ The root causes of semantics bugs are mostly in DFS servers

● Problem: Automatic and scalable bug-finding tool for DFSes

● Our solution Monarch: The first DFS fuzzing framework

○ Multi-node and cross-context fuzzing architecture

○ A two-step mutator to test DFSes with syscalls and faults

○ DFS semantic checker

● Takeway: Fuzzing is effective on distributed systems as well

● Artifact: https://github.com/rs3lab/Monarch

Conclusion

36
Thank you!

https://github.com/rs3lab/Monarch

