Monarch: A Fuzzing Framework
for Distributed File Systems

Tao Lyu LiyiZhang Zhiyao Feng Yueyang Pan Yujie Ren
Meng Xu Mathias Payer Sanidhya Kashyap

=PrL WATERLOO

DFSes are critical infrastructure

Hp I

High Performance

Machine Learning

1
Computing Serverless Model Training?
() <lIr
ceph GFS’

1. How Amazon EFS works 2. Building Meta’s GenAl Infrastructure

https://docs.aws.amazon.com/efs/latest/ug/how-it-works.html
https://engineering.fb.com/2024/03/12/data-center-engineering/building-metas-genai-infrastructure/

But DFSes are not reliable

Issues

- 11K Ceph bug reports Memory-unsafe languages

! ww 17KLustre bug reports State-sharing across clients

(m}
O of u LU-17917
sanity-hsm: 26A ((: != 5 : syntax error: operand expected (error token is "= 5 ")
0 e
n LU-17916
O of Enable folio allocation support on the buffed io read/write path (BIO)

L High concurrency

gds io crashes in unaligned_dio

g w7914
Inetctl net set command issues false error

g 17913

5 :r:i;:l:]et test_220 is silently failing Fa u It to I e ra n ce

Faked flexible array usage causes crash when Fortify feature is enabled

Finding and fixing bugs in DFSes become important

Existing approaches to finding DFSes bugs

Regression Model Formal

Testing Checking Verification

Test suit Modist Verdi
SAMC Ironfleet

Manual expert effort
Limited test cases

State explosion

Manual expert effort
Mostly verify critical parts

Any automatic and scalable bug-finding techniques?

Fuzzing: A practical and impactful approach

e Linux kernel fuzzer, syzkaller, detects over 1K bugs every year!

e Specifically, more than 800 bugs in local file systems over the years

Linux kernel bugs found by Syzkaller per year
2000

1500
1000
500

0—
2018

2019

2020

2021

2022

1. Syzbot/Syzkaller https://syzkaller.appspot.com/upstream/graph/found-bugs

2023

https://syzkaller.appspot.com/upstream/graph/found-bugs

How does fuzzing work?

““““““““

Syscalls

Generator/ g k
Mutator Single-node Crash consistency and

in-kernel LFSes memory bug checker

f O
O

Feedback

How does fuzzing work?

““““““““

Syscalls

Generator/) k
Mutator Single-node Crash consistency and
in-kernel LFSes memory bug checker
f O
O
Feedback

Current LFS fuzzers are not applicable for DFSes

Missing pieces for fuzzing DFSes

Single-node and
in-kernel file system

. Syscalls

Representation of
single-kernel exe state

Crash consistency +
memory checker

Multi-node cross-kernel/userspace fuzzing

architecture

Distributed faults as a testing input space

Representation of cross-node and
cross-kernel/userspace execution states

A systematic DFS semantic checker

MONARCH

A distributed file system fuzzer

Monarch architecture

Two-step test case syscalls Node N
mutator faults »L Node 1

f

DFS
DFS execution states o _ O Executor Server
representation @ /Client

|
% 4-[Checker D% st—?te -

Controller Workers

N 43310/

10

Monarch architecture

Two-step test case syscalls Node N
mutator faults »L Node 1

f

DFS
DFS execution states o _ O Executor Server
representation @ /Client
%4- Checker -+ @ * < |
DEFS state

Controller Workers

N 4310/

11

Two-step test case mutator

Non-fault mode: Testing with file system syscalls only (e.g., open, read)

e Syscall templates and mutation rules

Fault mode: Testing with syscalls + injected faults

e Distributed faults — Network partitions, node crashes
e How to deterministically inject faults? — Synchronization primitives
e At which granularity to inject faults? — Syscall granularity

e When to inject faults? — After a test case triggers new execution state

12

Monarch architecture

Two-step test case syscalls Node N
mutator faults »L Node 1

f

DFS
DFS execution states o _ O Executor Server
representation @ /Client

|
% 4-[Checker D% st—?te -

Controller Workers

N 43310/

20

What are the semantic bugs in DFS?

e Semantic: DFS state transitions specified in the spec
o Syscalls: sequential and concurrent

o Syscalls + faults

Sequential syscalls Concurrent syscalls Syscalls + Faults
Transitions

N Yy

DFS states X DFS states Y DFS states N

21

What are the semantic bugs in DFS?

e Semantic: DFS state transitions specified in the spec
o Syscalls: sequential and concurrent
o Syscalls + faults

e Semantic bugs: implementations violate the specified semantic

) 5])

Sequential syscalls Concurrent syscalls Syscalls + Faults
Transitions

Y

DFS states X DFS states Y DFS states N

22

Which semantic bug types are missing?

e Semantic: DFS state transitions specified in the spec
o Syscalls: sequential and concurrent
o Syscalls + faults

e Semantic bugs: implementations violate the specified semantic
Sequential syscalls Concurrent syscalls Syscalls + Faults
Transitions

Y

DFS states X DFS states Y DFS states N

23

DFS semantic checker: SYMSC

DFS —— [3: collected runtime states —l

Runtime info BeX

l

SYMSC —):set of emulated oracle states

Syscalls
+ faults

~ &0

24

Emulate sequential syscall executions

e Emulate syscalls one by one according to the specification

Sequential syscalls

mkdir A InodeO.dents = [., A]

Inodel.dents =[]

Inodel.xattr = [user.key:val
setxattr A user.key:val [y:val]

But the spec does not specify semantics under concurrency and faults

25

How to emulate semantic under concurrency?

® Concurrency relation built from syscall’s start and end timestamp

write 8KB write 4KB

|

\ fchmod

'

Concurrent execution

26

Syscalls to atomic operations

® Syscalls are splitted into one or more atomic operations

write 4KB

write 4KB
write 4KB
fchmod

l |

Concurrent execution

27

Serialize concurrent atomic operations

® Syscalls are splitted into one or more atomic operations

® Oracle states: emulate all interleavings among concurrent atomic operations

| write 4KB
write 4KB
write 4KB write 4KB
write 4KB
fchmod fchmod
l l write 4KB

Concurrent execution

v

write 4KB
fchmod
write 4KB

write 4KB

v

28

Case study of a CephFS bug

Runtime state

Client 1 Client 2
| |
open("A'|' O_CREATl cesy X) Open("A", O_CREATI . Y)
|
chmod("A", Y)

|
stat("A", stat1) stat("A", stat2)
; statl.mode=Y : stat2.mode = X

\ ¥

inode.mode =X orY

inode.mode =Y

statl.mode =Y stat2.mode =Y

29

Case study of a CephFS bug

Runtime state

Client 1 Client 2
| |
open("A'|' O_CREATl cesy X) Open("A", O_CREATI . Y)
|
chmod("A", Y)
I

stat("A", stat1) stat("A", stat2)
; statl.mode;Y ; stat2.mode = X
 SE R

inode.mode =X orY

inode.mode =Y

statl.mode =Y stat2.mode =Y

30

What is the semantic under faults?

Timeline

What’s the semantic of a write under faults?

init fault init crash fault
* @ @ write(fd, "data", 4)

stop fault stop crash fault

Server 1 Server 2 Server 3 Client 1

Distributed file system nodes

31

What is the semantic under faults?

® Apply the original semantic if the DFS is available to this syscall

® Return errors otherwise

init_fault init_crash_fault
v :
= * write(fd, "data", 4)
= , .
£ stop_fault stop_crash_fault
|—

Server 1 Server 2 Server 3 Client 1

Distributed file system nodes

32

Implementation and evaluation setup

® Two 64-core machines

® Ran intermittently for two months on six targeted DFSes

33

How effective is Monarch in finding bugs?

e Monarch found bugs in all DFSes and categories, with a total of 48 bugs

DEFS Memory bugs Semantic bugs
-u-s-t-re- Lustre 8 0
¥ GlusterFS 17

5
OrangeFS 3 0
<’ BeeGFS 0)
1
0
8

GFS’

@ CephFS 4

ceph

NFS 8
Total 40

= s

What are the characteristics of DFS bugs?

Faults play a critical role in exposing these bugs

— 14/40 memory bugs and 3/8 semantic bugs are exposed under faults

Vulnerable code is scattered in both servers and clients

— 17 bugs (servers) vs 31 bugs (clients)

— The root causes of semantics bugs are mostly in DFS servers

Bug exposure might depend on specific DFS configurations

35

Conclusion

ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED

AVAILABLE REPRODUCED

Problem: Automatic and scalable bug-finding tool for DFSes
Our solution Monarch: The first DFS fuzzing framework
o Multi-node and cross-context fuzzing architecture
o A two-step mutator to test DFSes with syscalls and faults
o DFS semantic checker
Takeway: Fuzzing is effective on distributed systems as well

Artifact: https://github.com/rs3lab/Monarch

Thank you!

36

https://github.com/rs3lab/Monarch

