
Tolerate It if You Cannot Reduce It:
Handling Latency in Tiered Memory

Musa Unal Vishal Gupta Yueyang Pan Yujie Ren Sanidhya Kashyap

EPFL

Abstract

Current memory tiering systems mitigate asymmetric la-

tency through page migration between tiers. While this

approach effectively hides latency, it overlooks scenarios

where latency could potentially be tolerated.We propose that

an efficient system should integrate both latency reduction

(migration) and latency tolerance strategies. Our research

demonstrates the effectiveness of prefetchers in tolerating

latency within such systems, highlighting their importance

in the design of high-performance memory tiering solutions.

Keywords

Memory tiering, prefetching, compiler, runtime, CXL

1 Introduction

Memory has emerged as one of the most critical resource

in modern data centers as applications demands continue

to grow [41]. Recent studies have highlighted this challenge,

particularly as data-intensive workloads become more

prevalent [19, 31, 36, 41]. The emergence of interconnect

technologies, such as Compute Express Link (CXL) [17],

presents a promising solution for expanding DRAM capacity

beyond traditional limits. CXL provides low latency,

cache-coherent load/store access to memory over the

PCIe interface, effectively circumventing the constraints

of the physical DIMM slots. Studies have shown that

combining conventional DRAM with CXL-attached memory

creates multiple memory tiers with varying performance

characteristics in terms of latency and bandwidth [33, 40].

Achieving close-to-DRAM application performance across

these memory tiers requires efficient bandwidth and latency

utilization. This challenge mirrors research from the 1990s

and early 2000s that focused on managing latency. Earlier

works differentiated between reducing latency, primarily

through cache hierarchies and locality optimizations [7, 12,

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

HOTOS 25, May 14–16, 2025, Banff, AB, Canada
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1475-7/25/05.

https://doi.org/10.1145/3713082.3730376

Fast Tier

CPU Cache
load / 
prefetch

demote

promote
Slow Tier

1

2

3 3 load / 
prefetch

Figure 1: Current tiering systems are trying to optimize load

time (3) by demoting (1) and promoting (2) between the nodes.

However not each load equally created, there is an opportu-

nity to (3) prefetch into the cache before accessing to hide

the access latency of slower tier.

21, 34], and tolerating latency, often using data prefetching

and multithreading [7, 12, 21, 34].

Today’s tiered memory systems primarily reduce latency

via dynamically migrating data between tiers based on access

frequency, often referred to as hotness. Figure 1 illustrates
this process, which entails promoting frequently accessed

(hot) data to fast tier while demoting infrequently accessed

(cold) data to the slower tier. Current tiered memory sys-

tems primarily focus on either the mechanisms for migrating

data [33, 46] or policies to detect hotness [3, 30, 33, 37, 42].

While migrating pages effectively clusters them by their hot-

ness, this approach fundamentally relies on exploiting the

locality properties inherent in the application’s data accesses,

also known as its working set [18].

An alternative approach for managing latency is tolerating

it by exploiting CPU cache prefetching. Prefetchers attempt

to predict future memory access patterns and preemptively

load data from memory to CPU cache, thereby reducing ef-

fective access latencies by minimizing cache misses. While

prefetching becomes particularly crucial in tiered systems to

hide slow-tier access latencies, existing hardware prefetch-

ers [10, 11, 24] and software solutions [4, 28] are designed

for homogeneous memory architectures. We find that di-

rectly applying these conventional prefetching approaches

to tiered memory systems can actually degrade application

performance by approximately 19% in real-world scenarios

on CXL-attached memory, as analyzed shortly.

In this paper, we argue that a comprehensive approach

to latency management in tiered memory systems should

include both latency reduction and tolerance techniques.

As a part of this proposal, we are designing a compiler and

runtime to enable data prefetching in tiered memory systems.

The compiler is responsible for detecting the prefetchability

of memory regions, while the runtime is responsible for

1

https://doi.org/10.1145/3713082.3730376


enforcing multi-dimensional policies (discussed in §3.4) for

efficient memory tiering.

2 Prefetching on Tiered Memory

Current prefetching techniques, both hardware and soft-

ware, focus on DRAM [38]. To understand the impact of

prefetchers in a tiered memory system, we evaluate exist-

ing data-intensive applications using both DRAM and CXL-

attached memory (CXL 2.0 SMART CXA-4F1W equipped

with 4x64GB DDR5-5600 RDIMMs [1]). In our system, local

DRAM achieves an idle-latency of 112 ns with a bandwidth

of 271 GB/s, while CXL has an idle-latency of 237 ns and a

bandwidth of 46 GB/s. From now on we will refer to CXL-

attached memory as CXL.

2.1 Hardware Prefetching

Hardware prefetchers aim to reduce cache misses by proac-

tively predicting and preloading data from DRAM into the

processor cache. A key limitation, imposed by constrained

CPU die size, is that hardware implementations can only

effectively manage a restricted set of predictable access pat-

terns. As a result, significant research effort has been dedi-

cated to developing and analyzing specific hardware prefetch-

ing heuristics, such as stride [8, 16, 24, 26, 29], spatial ac-

cess [11, 14, 15], and temporal access [9, 10].

Impact of hardware prefetching on CXL memory. To

understand the impact of prefetching, we evaluate the GAP

benchmark suite [13]. We run tests allocating application

memory entirely on DRAM or CXL. We observe that when

we allocate application memory on DRAM, 18 out of 20 ap-

plications benefit from hardware prefetchers, achieving an

average speedup of 1.47×, with a maximum of 3.43×. When

memory is allocated on CXL, 17 out of 20 applications bene-

fit, with an average speedup of 1.26×, reaching up to 2.27×.
Another key observation is that DRAM did not exhibit sig-

nificant performance degradation with prefetching enabled,

whereas CXL experienced a 19% performance degradation.

To further understand the impact of CPU core count, we

select two applications: betweenness centrality (BC) with
the twitter graph (using Brandes algorithm) and XSBench,

which represents Monte Carlo neutron transport algorithm.

Figure 2 shows that prefetching is more effective when using

CXL memory compared to DRAM at low number of cores.

This is because CXL has a higher latency, which presents

a greater opportunity for prefetchers to hide access delays.

However, on increasing the number of cores, we observe

that the effectiveness of prefetching on CXL starts to de-

crease and eventually begin to hurt the performance for both

applications.

The primary reason hardware prefetching in CXL yields

limited benefits is due to its limited bandwidth (5.9× lower

0.5

0.75

1

1.25

1.5

5 10 15 20 25

0.5

0.75

1

1.25

1.5

5 10 15 20 25

DRAM

CXL

Thread

BC with twitter graph

DRAM

CXL

Threads

XSBench

Figure 2: When the number of threads increases the prefetch-

ing effectiveness of CXL decreases while DRAM being con-

stant, and for high number of threads prefetching hurts the

performance on CXL.

200

400

600

800

1000

1200

1400

1600

0 20 40 60 80 100

Prefetch enabled

Prefetch disabled

L
a
t
e
n
c
y
(
n
s
)

Load

Loaded latency on memory tiers

Figure 3: Under high load, prefetching causes latency to

increase dramatically at lower loads compared to when

prefetching is disabled, resulting in up to 6.3× higher latency.

than DRAM). Excessive prefetching requests causes con-

tention on the CXL link (due to memory expander), leading

to performance degradation. To quantify the impact of band-

width contention on latency due to hardware prefetching, we

run theMLC [44] loaded latency test. It measures latency un-

der different load scenarios where higher loads corresponds

to shorter delays between requests (starting from 10K cycles

to 0 cycles). As shown in Figure 3, unnecessary prefetch-

ing can increase latency by an order of magnitude, reaching

1,500 ns for CXL. In contrast, DRAM latency increases only

by 2× due to its higher bandwidth.

2.2 Software Prefetching

Software prefetching offers greater flexibility and potential

for application-specific optimization compared to hardware

prefetching, as it involves inserting prefetch instructions di-

rectly into the target program’s code. Implementations typi-

cally rely on compilers [4, 6, 28] or profile-guided optimiza-

tion (PGO)[28, 39, 47]. Moreover, recent works have focused

on understanding how hardware and software prefetching

2



1100

1150

1200

1250

1300

0 1 2 3 4 5 6 7 8 9 10

DRAM

CXL

T
i
m
e
t
o
c
o
m
p
l
e
t
i
o
n
(
m
s
)

Prefetch distance

Prefetch distance difference

Figure 4: DRAM and CXL have different optimal prefetch

distances. For example, in the scan microbenchmark, DRAM

performs best with a prefetch distance of 4, while CXL re-

quires a longer distance of 7 due to its higher latency.

can be combined effectively, especially for applications run-

ning at data center scale [27]. Software prefetching is ef-

fective when prefetch instructions are issued at the correct

time, known as timeliness. Timeliness is controlled through

prefetch distance, which specifies how far in advance data

should be prefetched [4]. Setting the correct distance is crit-

ical: fetching too early risks data eviction from the cache

before use, while fetching too late fails to hide latency and

negates the potential benefit [28].

Impact of prefetch distance on CXLmemory. In a tiered

memory system with low-latency DRAM and high-latency

CXL, determining the optimal prefetch distance is challeng-

ing due to dynamic data migration between tiers. To evaluate

the impact of prefetch distance, we developed a microbench-

mark that executes a scan operation on a large array of data

with a constant stride. In each scan, we systematically var-

ied the software prefetch distance (𝑘) from 1 to 16 elements

ahead. Moreover, we disabled hardware prefetching during

this experiment. We observe a distinct optimal prefetch dis-

tance for each tier: 𝑘 = 4 for DRAM, while 𝑘 = 7 for CXL.

This difference confirms that CXL’s higher latency requires

prefetches to be initiated further in advance (via a larger

prefetch distance) to effectively hide the longer access time.

Summary. We summarize the following insights according

to our experiments.

• Data prefetchers can effectively tolerate CXL latency.

• Hardware prefetchers can degrade performance under

bandwidth contention.

• Software prefetchers must use tiering-aware prefetch

distances to be effective.

3 Proposal

We propose Linden: a system to reduce data access latency

by efficiently managing data placement between memory

tiers and tolerating the latency by exploiting data prefetchers.

Figure 5 shows the main components of Linden: compiler,

Linden Runtime

Hotness Hardware
Monitoring

Compiler
Hints

Policy Enforcer

Page
Migration

Hardware
Adaptation

Software
Adaptation

Metrics

Mechanisms

Linden Compiler

Backend

App

Program
Analyzer

Instrumented
App

Figure 5: Linden consists of a compiler and runtime. Com-

piler takes a program and finds the prefetchable regions in

the program. Runtime is responsible for detecting hotness,

hardware monitoring, and compiler hints to enforce differ-

ent policies. Runtime able to migrate pages between the tiers,

enable/disable hardware prefetchers and change the software

behavior in terms prefetchability.

and a runtime. Linden compiler detects prefetchable regions,
where prefetching is beneficial in tolerating the data access

latency. Linden runtime first combines information about

prefetchable regions with page hotness and hardware con-

tention metrics. It later enforces policies to reduce and toler-

ate the data access latency by migrating pages between tiers,

enabling/disabling hardware prefetchers, and modifying soft-

ware prefetches. The policy enforcement has two objectives:

• Reduce: Minimize data access latency by increasing the

locality.

• Tolerate: Hide the data access latency by prefetching.

We start by defining the prefetchable region (§3.1) and how

Linden compiler detects them (§3.2). Later, we describe the

Linden runtime’s mechanism and policies (§3.3).

3.1 Prefetchable Regions

A prefetchable region is a set of memory pages, potentially

non-contiguous, that are amenable to hardware or software

prefetching. The goal of a prefetchable region is to hide

latency for the loads within that region and to minimize it

by issuing accurate and timely prefetches. Each region has

the following properties:

• Memory region (region): List of pages that shares a
similar access pattern for a particular thread. The size

of this list is configurable.

• Prefetchability ratio (ratio): This metric quantifies

the potential percentage of load access latency within

a region that can be hidden by effective prefetching.

Regions with more predictable access patterns yield

higher prefetchability ratios. The value ranges from 0

(no latency hidden) to 1 (all latency hidden).

• Type of access pattern (pattern): How are loads

accessed within a region? Simple patterns like next

line and stride can be prefetched either by hardware

3



Thread region ratio type freshness target
𝑇0 A 0.9 Sequential 200 𝑙1, 𝑑1

𝑇1 A 0.05 None 1 None

𝑇2 B 0.7 Chase 50 𝑙2, 𝑑2

Table 1: An example of a prefetchability table.

prefetchers or software prefetchers. However, irreg-

ular and temporal access patterns require software

prefetch instructions.

• Target (target): Which prefetch instruction is target-

ing which load? This includes the prefetch address

and the prefetch distance. This helps in issuing timely

prefetches when memory access latency changes.

• Freshness (freshness): Time passed after the last 𝑟𝑎𝑡𝑖𝑜

update on a particular region. It starts from 0 and in-

crements until a user-defined threshold. This helps to

give different policy/scheduling decisions to runtime.

Table 1 outlines the data tracked by the Linden runtime

for each prefetchable region. Consider two memory regions,

A and B, and three worker threads: 𝑇0, 𝑇1, and 𝑇2. 𝑇0 sequen-

tially scans A, resulting in a high prefetchability ratio due

to its linear access pattern. In contrast, 𝑇1 acts as a transac-

tion handler, accessing A randomly, which leads to a low

prefetchability ratio because of random accesses. Meanwhile,

𝑇2 performs pointer chasing within B, which can be effec-

tively prefetched using software prefetching. By linking ac-

cess patterns to memory regions, we can better assess the

advantages of prefetching in mitigating latency.

3.2 Detecting Prefetchable Regions

Depending on whether the application source code is avail-

able, prefetchable regions can be detected either by the

Linden compiler or the Linden runtime.

Compiler support. The Linden compiler takes an applica-

tion as an input and produces a modified binary. This binary

is instrumented so that, at runtime, it can inform the associ-

ated runtime system about identified prefetchable regions.

To identify these regions, the compiler utilizes pluggable

backends capable of analyzing data access patterns; these

backends can leverage existing techniques like specialized

compiler passes [4, 28] or machine learning approaches [22].

For example, upon detecting a predictable access pattern

(e.g., within a loop) via a backend, Linden instruments the

program by inserting specific helper functions. At runtime,

these helper functions execute and communicate key infor-

mation, such as the accessing thread ID, the memory region

identifier (region), and the detected access pattern type (pat-
tern), to the runtime system. This runtime information is

collected to populate the prefetchability table (Table 1).

Hardware sampling. When application source code is

unavailable for compile-time instrumentation, the Linden

runtime can use hardware sampling. It uses specific hardware

1 metrics = [hotness, hw_info, sw_info]
2 # Reduce
3 reduce(state, metrics.hotness, metrics.hw_info)
4 # Check for any contention
5 if (metrics.hw_info < contention_threshold):
6 tolerate(state, metrics.sw_info)
7 # Adapt software after tolerating if needed
8 adapt_sw(state, RELAXED)
9 else:
10 # Adapt hardware to avoid perf degradation
11 adapt_hw(state)
12 adapt_sw(state, CONSERVATIVE)

Listing 1: Algorithm for policy enforcement in the Linden

runtime.

performance counters to assess the effectiveness of the built-

in hardware prefetchers for accessed memory pages [25].

Based on this sampling data, the runtime identifies regions

that appear to be adequately prefetched by the hardware. In

addition, just-in-time compilation [2] offer another runtime

alternative where software prefetches can be added to the

code on the fly.

3.3 Linden Runtime

Linden runtime consists of two parts: (1) monitoring utility

to collect information about page hotness, compiler hints

for prefetchability, and hardware statistics to check memory

contention; (2) mechanisms like page migration, adapting

hardware prefetcher or changing software prefetches. They

enforce policies to reduce and tolerate the data access latency.
Metric monitoring.

We now discuss various metrics that the metric monitor
collects and processes.

• Hotness. Prior works have explored various forms of

policies and mechanisms to detect hotness, including LRU-

and histogram-based approaches [30, 33, 37]. Similar to

prior works, Linden uses Intel PEBS [30, 37] or page table

scanning [33, 46] for maintaining hotness metrics.

• Compiler hints. Linden runtime gets information from

the instrumented application code about the prefetcha-

bility of the memory regions, and eventually it generates

prefetchability table.
• Hardware monitoring is important for both reduce
and tolerate approaches. As discussed in §2.1, applica-

tion performance degrades under high memory system

load due to factors like ineffective prefetching, band-

width limitations, or memory tier congestion, the lat-

ter also being highlighted by recent work [42]. Thus,

to effectively analyze and react to these conditions,

Linden monitors three categories of hardware metrics:

(1) Prefetcher-related hardware counters, such as L2

hardware prefetches (L2_RQSTS.ALL_HWPF) and useless

prefetches (L2_LINES_OUT.USELESS_HWPF), (2) Bandwidth

4



and latency measurements for each memory tier, (3) Tier-

specific congestion indicators. These measurements rely

on sampling-based techniques with overhead directly pro-

portional to sampling frequency. To minimize this over-

head, we plan to adjust the sampling frequency dynami-

cally, similar to Memtis [30].

Mechanisms. Linden’s runtime mechanisms include:

• Pagemigration. Similar to hotness detection, the runtime

uses existing approaches for page migration. For instance,

it promotes and demotes pages in the background similar

to Memtis [30] to avoid any performance degradation.

• Hardware adaptation. The runtime controls hardware

prefetchers (stream, stride) through MSR registers [25]. It

provides fine-grained control to enable/disable hardware

prefetching for specific cores to avoid any performance

degradation due to excessive prefetching requests.

• Software adaptation. The runtime follows two ap-

proaches to modify software prefetch instructions inserted

by the Linden compiler: (1) It modifies the prefetch dis-
tance by moving the prefetch instruction earlier or later

in the instruction stream. (2) It adds new prefetch instruc-

tions by using JIT compilers [2].

3.4 Policy Enforcer

The runtime uses reduce and tolerate methods (Listing 1) to

enforce the policies. The reduce method improves locality

by piggybacking existing memory tiering policies. Then, de-

pending on the hardware state (e.g. contention on memory),

it can either increase or decrease the amount of prefetches.

When contention is low, it uses the tolerate method to maxi-

mize latency hiding opportunities by increasing the aggres-

siveness of software prefetching. Under high contention, it

disables hardware prefetching and makes software prefetch-

ing more conservative. Linden can support multiple policies

using the reduce and tolerate functions. We now look at three

policies in detail:

1. Improve performance (tolerate if you cannot reduce).
Previous works on memory tiering focus on reduce and mi-

grating data between tiers to increase locality. One of the

major challenges in tiered memory is managing a scenario

where the hot data resides in both fast and slow tiers. Pre-

vious works suggest that in such scenarios it is better to

disable tiering [45]. However, there is still an opportunity

to use tolerate to increase system’s performance. The main

insight for this policy is that if a region is hot and prefetch-

able, we might migrate that region into the slower tier since

prefetchers may hide the latency to access this region.

We test this policy with a microbenchmark, where we allo-

cate 10GB of memory: 5 GB from DRAM and 5GB from CXL

(1:1), and we break down memory into 20 regions. The mi-

crobenchmark consists of a worker thread that issues loads

to different memory regions with different access patterns

(either sequential or random). We reran the experiment by

changing the allocation site (DRAM or CXL) of the regions

that are sequentially accessed. We observe that in such sce-

narios, if the region is hot and prefetchable, we gain up to 7%

improvement by moving it into the slow tier, even for only

20% sequential regions.

2. Control throttling (do not tolerate every time).
Prefetching via tolerate should happen optimally as aggres-

sive prefetching can hurt the application’s performance [27]

and the effect is even worse with CXL (Figure 2). Linden

runtime offers different policies to throttle prefetch requests

depending on the bandwidth characteristics of the tiering

system. A policy like Limoncello [27], which disables hard-

ware prefetching under high memory utilization, leads to

suboptimal performance in the tiering system. Specifically,

contention might happen on the slow tier, but the threads ac-

cessing the fast tier will suffer as prefetching is also disabled

for them. Linden leverages its prefetchability table to track

which cores access which memory tiers. It can then selec-

tively disable hardware prefetching only for cores accessing

the slow tier, while implementing conservative software

prefetching as needed.

3. Control timeliness (tolerate when there is some time).
Ensuring prefetch timeliness is critical, as fetching too early

risks cache eviction, while fetching too late fails to hide la-

tency completely [4, 28]. Tiered memory systems complicate

this timeliness (§2.2) because migrating pages change the

effective memory latency, thus altering the optimal prefetch

distance required for different tiers. Linden addresses this

dynamically: when a page containing a software prefetch

instruction migrates to a different tier, the runtime adjusts

the associated prefetch distance to match the optimal value

for the new tier. For instance, the prefetch distance would

be updated to 7 if the data is demoted into the CXL and vice-

versa, as shown in Figure 4. Linden can use JIT [2] to change

the prefetch distance based on the latency of the slower tier.

Moreover, this operation occurs reactively based on relevant

page migration events, not at fixed time intervals.

4 Discussion

Linden tradeoffs. The compiler must balance several

tradeoffs when identifying prefetchable memory regions:

1) Instrumentation vs. size. Entries in the prefetchability

table are generated for each memory region. Smaller regions

add additional performance and memory overhead due to

excessive instrumentation and extra entries in the table.

2) Accuracy vs. size. Too big or small region can be less

predictable to prefetchers, resulting in either inaccurate or

untimely prefetches. We plan to evaluate this with a wide

range of benchmarks.

5



3) Coverage vs. compilation time. A machine learning

based approach can provide higher coverage and in turn, the

prefetchability ratio, compared to simple stride or irregu-

lar access pattern but at the cost of spending more time in

finding them.

Exploring the synergy between tolerate and reduce. The
compiler has the capability to detect both prefetchable and

non-prefetchable regions. Thus, inferring prefetchable re-

gions can be considered as an opportunity for pagemigration.

In particular, the prefetchable region can capture the set of

pages, which can also be used for minimizing tracking in-

formation [35]. On the other hand, for applications with

non-prefetchable regions [6], we can extend Linden to run

scavenger jobs (background jobs such as batch jobs that can

harvest the idle cycles) similar to MSH [32]. These jobs ex-

ecute while the application code is waiting for data to be

fetched from memory. The application can switch to scav-

enger jobs for non-prefetchable regions through compiler-

inserted coroutines [23, 32], which can be integrated into

the compiler. Applying this technique can help Linden to

tolerate latencies even for non-prefetchable regions.

Extensions for other memory systems. We can extend

Linden for systems with multiple memory tiers that con-

sist of DRAM, CXL, and RDMA-based memory. Prefetching

showed promising results for RDMA-based memory sys-

tems [5, 20]. Similar to RCMP [43], Linden’s reduce and

tolerate can be extended to support these systems. The com-

plexity lies in designing policies that can work across multi-

ple tiers with varying definitions of prefetching and memory

characteristics. As a future work, memory pooling can be

explored; however, these systems require more support as

multiple applications can be accessing the memory at the

same time with different access pattern resulting in different

prefetchability regions. Combining this information along

with congestion across multiple machines will be interesting

to explore.

Future landscape of CXL. PCIe5 supports 4GB/s per

lane while PCIe6 will support 8GB/s, which will increase

the CXL’s memory bandwidth up to 128GB/s (assuming x16

lanes), and interleaving between multiple CXL devices might

eliminate the bandwidth problem. However, the latency prob-

lem will still be there. Effectively prefetching the regions

from CXL can hide the latency difference between CXL and

DRAM. Moreover, for higher bandwidths prefetching can be

done in a more aggressive way.

5 Conclusion

For an efficient tiered memory system we need to consider

both latency reduction and latency toleration. With this pro-

posal, we showed how data prefetching can be used as a

latency toleration technique in the tiered memory, what are

the current challanges and how can we solve them.

6 Acknowledgment

We thank the anonymous reviewers, and our shepherd, Mar-

cos K. Aguilera, for their helpful feedback.

References

[1] CXL memory expansion. https://www.smartm.com/ [Accessed: 2025-

01-16].

[2] A.-R. Adl-Tabatabai, R. L. Hudson, M. J. Serrano, and S. Subramoney.

Prefetch injection based on hardware monitoring and object metadata.

ACM SIGPLAN Notices, 39(6):267–276, 2004.

[3] N. Agarwal and T. F. Wenisch. Thermostat: Application-transparent

page management for two-tiered main memory. In Proceedings of the
Twenty-Second International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 631–644, 2017.

[4] S. Ainsworth and T. M. Jones. Software prefetching for indirect mem-

ory accesses. In 2017 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), pages 305–317. IEEE, 2017.

[5] H. Al Maruf and M. Chowdhury. Effectively prefetching remote mem-

ory with leap. In 2020 USENIX Annual Technical Conference (USENIX
ATC 20), pages 843–857, 2020.

[6] G. Ayers, H. Litz, C. Kozyrakis, and P. Ranganathan. Classifying

memory access patterns for prefetching. In Proceedings of the Twenty-
Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 513–526, 2020.

[7] A.-H. A. Badawy, A. Aggarwal, D. Yeung, and C.-W. Tseng. Evaluating

the impact of memory system performance on software prefetching

and locality optimizations. In Proceedings of the 15th international
conference on Supercomputing, pages 486–500, 2001.

[8] J.-L. Baer and T.-F. Chen. An effective on-chip preloading scheme to

reduce data access penalty. In Supercomputing ’91:Proceedings of the
1991 ACM/IEEE Conference on Supercomputing, pages 176–186, 1991.
doi: 10.1145/125826.125932.

[9] M. Bakhshalipour, P. Lotfi-Kamran, and H. Sarbazi-Azad. An efficient

temporal data prefetcher for l1 caches. IEEE Computer Architecture
Letters, 16(2):99–102, 2017. doi: 10.1109/LCA.2017.2654347.

[10] M. Bakhshalipour, P. Lotfi-Kamran, and H. Sarbazi-Azad. Domino

temporal data prefetcher. In 2018 IEEE International Symposium on
High Performance Computer Architecture (HPCA), pages 131–142, 2018.
doi: 10.1109/HPCA.2018.00021.

[11] M. Bakhshalipour, M. Shakerinava, P. Lotfi-Kamran, and H. Sarbazi-

Azad. Bingo spatial data prefetcher. In 2019 IEEE International Sym-
posium on High Performance Computer Architecture (HPCA), pages
399–411, 2019. doi: 10.1109/HPCA.2019.00053.

[12] A. Bakshi, J.-L. Gaudiot, W.-Y. Lin, M. Makhija, V. K. Prasanna, W. Ro,

and C. Shin. Memory latency: to tolerate or to reduce. In 12th Sym-
posium on Computer Architecture and High Performance Computing.
Invited paper, 2000.

[13] S. Beamer, K. Asanović, and D. Patterson. The gap benchmark suite.

arXiv preprint arXiv:1508.03619, 2015.

[14] J. F. Cantin, M. H. Lipasti, and J. E. Smith. Stealth prefetching. In

Proceedings of the 12th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, ASPLOS XII,
page 274–282, New York, NY, USA, 2006. Association for Computing

Machinery. ISBN 1595934510. doi: 10.1145/1168857.1168892. URL

6

https://www.smartm.com/


https://doi.org/10.1145/1168857.1168892.

[15] C. Chen, S.-H. Yang, B. Falsafi, and A. Moshovos. Accurate and

complexity-effective spatial pattern prediction. In 10th International
Symposium on High Performance Computer Architecture (HPCA’04),
pages 276–287, 2004. doi: 10.1109/HPCA.2004.10010.

[16] T.-F. Chen and J.-L. Baer. Effective hardware-based data prefetching

for high-performance processors. IEEE transactions on computers, 44
(5):609–623, 1995.

[17] T. C. Consortium. Compute Express Link Specification. https://www.

computeexpresslink.org/ [Accessed: 2025-01-16].

[18] P. J. Denning. Working set analytics. ACM Computing Surveys (CSUR),
53(6):1–36, 2021.

[19] J. Guo, Z. Chang, S. Wang, H. Ding, Y. Feng, L. Mao, and Y. Bao.

Who Limits the Resource Efficiency of My Datacenter: An Analy-

sis of Alibaba Datacenter Traces. In 2019 IEEE/ACM 27th Interna-
tional Symposium on Quality of Service (IWQoS), pages 1–10, 2019. doi:
10.1145/3326285.3329074.

[20] Z. Guo, Z. He, and Y. Zhang. Mira: A program-behavior-guided far

memory system. In Proceedings of the 29th Symposium on Operating
Systems Principles, pages 692–708, 2023.

[21] A. Gupta, J. Hennessy, K. Gharachorloo, T. Mowry, and W.-D. Weber.

Comparative evaluation of latency reducing and tolerating techniques.

In Proceedings of the 18th Annual International Symposium on Computer
Architecture, pages 254–263, 1991.

[22] M. Hashemi, K. Swersky, J. Smith, G. Ayers, H. Litz, J. Chang,

C. Kozyrakis, and P. Ranganathan. Learning memory access patterns.

In International Conference on Machine Learning, pages 1919–1928.
PMLR, 2018.

[23] Y. He, J. Lu, and T. Wang. Corobase: coroutine-oriented main-memory

database engine. arXiv preprint arXiv:2010.15981, 2020.

[24] S. Iacobovici, L. Spracklen, S. Kadambi, Y. Chou, and S. G. Abraham.

Effective stream-based and execution-based data prefetching. In Pro-
ceedings of the 18th Annual International Conference on Supercomputing,
ICS ’04, page 1–11, New York, NY, USA, 2004. Association for Com-

puting Machinery. ISBN 1581138393. doi: 10.1145/1006209.1006211.

URL https://doi.org/10.1145/1006209.1006211.

[25] Intel. Intel® 64 and IA-32 Architectures Software Developer’s Manual. In-
tel, 2025. URL https://www.intel.com/content/www/us/en/developer/

articles/technical/intel-sdm.html. Volumes 1–3.

[26] Y. Ishii, M. Inaba, and K. Hiraki. Access map pattern matching for

data cache prefetch. In Proceedings of the 23rd International Conference
on Supercomputing, ICS ’09, page 499–500, New York, NY, USA, 2009.

Association for Computing Machinery. ISBN 9781605584980. doi: 10.

1145/1542275.1542349. URL https://doi.org/10.1145/1542275.1542349.

[27] A. Jain, H. Lin, C. Villavieja, B. Kasikci, C. Kennelly, M. Hashemi, and

P. Ranganathan. Limoncello: Prefetchers for scale. In Proceedings
of the 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 3, pages 577–
590, 2024.

[28] S. Jamilan, T. A. Khan, G. Ayers, B. Kasikci, and H. Litz. Apt-get: Profile-

guided timely software prefetching. In Proceedings of the Seventeenth
European Conference on Computer Systems, pages 747–764, 2022.

[29] N. Jouppi. Improving direct-mapped cache performance by the addi-

tion of a small fully-associative cache and prefetch buffers. In [1990]
Proceedings. The 17th Annual International Symposium on Computer
Architecture, pages 364–373, 1990. doi: 10.1109/ISCA.1990.134547.

[30] T. Lee, S. K. Monga, C. Min, and Y. I. Eom. Memtis: Efficient memory

tiering with dynamic page classification and page size determination.

In Proceedings of the 29th Symposium on Operating Systems Principles,
pages 17–34, 2023.

[31] C. Lu, K. Ye, G. Xu, C.-Z. Xu, and T. Bai. Imbalance in the cloud: An

analysis on alibaba cluster trace. In 2017 IEEE International Conference
on Big Data (Big Data), pages 2884–2892. IEEE, 2017.

[32] Z. Luo, S. Son, S. Ratnasamy, and S. Shenker. Harvesting memory-

bound {CPU} stall cycles in software with {MSH}. In 18th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
24), pages 57–75, 2024.

[33] H. A. Maruf, H. Wang, A. Dhanotia, J. Weiner, N. Agarwal, P. Bhat-

tacharya, C. Petersen, M. Chowdhury, S. Kanaujia, and P. Chauhan.

Tpp: Transparent page placement for cxl-enabled tiered-memory. In

Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 3,
pages 742–755, 2023.

[34] T. C. Mowry. Tolerating latency in multiprocessors through compiler-

inserted prefetching. ACM Transactions on Computer Systems (TOCS),
16(1):55–92, 1998.

[35] S. Park, Y. Lee, and H. Y. Yeom. Profiling dynamic data access patterns

with controlled overhead and quality. In Proceedings of the 20th In-
ternational Middleware Conference Industrial Track, Middleware ’19,

page 1–7, New York, NY, USA, 2019. Association for Computing Ma-

chinery. ISBN 9781450370417. doi: 10.1145/3366626.3368125. URL

https://doi.org/10.1145/3366626.3368125.

[36] R. J. Pfitscher, M. A. Pillon, and R. R. Obelheiro. Customer-oriented

diagnosis of memory provisioning for iaas clouds. SIGOPS Oper. Syst.
Rev., 48(1):2–10, may 2014. ISSN 0163-5980. doi: 10.1145/2626401.

2626403. URL https://doi.org/10.1145/2626401.2626403.

[37] A. Raybuck, T. Stamler, W. Zhang, M. Erez, and S. Peter. Hemem:

Scalable tiered memory management for big data applications and real

nvm. In Proceedings of the ACM SIGOPS 28th Symposium on Operating
Systems Principles, pages 392–407, 2021.

[38] B. Saglam, N. Ho, C. Falquez, A. Portero, F. Schätzle, E. Suarez, and

D. Pleiter. Data prefetching on processors with heterogeneous memory.

In Proceedings of the International Symposium on Memory Systems,
pages 45–60, 2024.

[39] H. Shen, K. Pszeniczny, R. Lavaee, S. Kumar, S. Tallam, and X. D. Li.

Propeller: A profile guided, relinking optimizer for warehouse-scale

applications. In Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 2, pages 617–631, 2023.

[40] Y. Sun, Y. Yuan, Z. Yu, R. Kuper, C. Song, J. Huang, H. Ji, S. Agarwal,

J. Lou, I. Jeong, et al. Demystifying cxl memory with genuine cxl-ready

systems and devices. In Proceedings of the 56th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 105–121, 2023.

[41] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and

J. Wilkes. Large-scale cluster management at google with borg. In

Proceedings of the tenth european conference on computer systems, pages
1–17, 2015.

[42] M. Vuppalapati and R. Agarwal. Tiered memory management: Access

latency is the key! In Proceedings of the ACM SIGOPS 30th Symposium
on Operating Systems Principles, pages 79–94, 2024.

[43] Z. Wang, Y. Guo, K. Lu, J. Wan, D. Wang, T. Yao, and H. Wu. Rcmp:

Reconstructing rdma-based memory disaggregation via cxl. ACM
Transactions on Architecture and Code Optimization, 21(1):1–26, 2024.

7

https://doi.org/10.1145/1168857.1168892
https://www.computeexpresslink.org/
https://www.computeexpresslink.org/
https://doi.org/10.1145/1006209.1006211
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://doi.org/10.1145/1542275.1542349
https://doi.org/10.1145/3366626.3368125
https://doi.org/10.1145/2626401.2626403


[44] T. Willhalm, S. Sakthivelu, S. Srikanthan, V. Viswanathan,

and K. Kumar. Intel® Memory Latency Checker v3.11.

https://www.intel.com/content/www/us/en/developer/articles/

tool/intelr-memory-latency-checker.html, 2021.

[45] L. Xiang, Z. Lin, W. Deng, H. Lu, J. Rao, Y. Yuan, and R. Wang.

Nomad: Non-Exclusive memory tiering via transactional page mi-

gration. In 18th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 24), pages 19–35, Santa Clara, CA, July

2024. USENIX Association. ISBN 978-1-939133-40-3. URL https:

//www.usenix.org/conference/osdi24/presentation/xiang.

[46] Z. Yan, D. Lustig, D. Nellans, and A. Bhattacharjee. Nimble page

management for tiered memory systems. In Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 331–345, 2019.

[47] Y. Zhang, N. Sobotka, S. Park, S. Jamilan, T. A. Khan, B. Kasikci, G. A.

Pokam, H. Litz, and J. Devietti. Rpg2: Robust profile-guided runtime

prefetch generation. In Proceedings of the 29th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2, pages 999–1013, 2024.

8

https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.usenix.org/conference/osdi24/presentation/xiang
https://www.usenix.org/conference/osdi24/presentation/xiang

	Abstract
	1 Introduction
	2 Prefetching on Tiered Memory
	2.1 Hardware Prefetching
	2.2 Software Prefetching

	3 Proposal
	3.1 Prefetchable Regions
	3.2 Detecting Prefetchable Regions
	3.3 Linden Runtime
	3.4 Policy Enforcer

	4 Discussion
	5 Conclusion
	6 Acknowledgment
	References

