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Applications demand storage capacity and bandwidth
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Evolving storage media with specialized file systems
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Persistent 

memory
NVMe 

SSD

Ultra-fast

NVMe SSD

Storage 

hardware
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7.4 GB/s

Specialized 

file systems
NOVA

F2FS

Use them collaboratively to reduce cost and retain performance!
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$
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Hiding latency with hierarchical design philosophy
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Storage devices present diverse characteristics in latency, capacity, and price

High latency device

Low latency device

Application

Caching Tiering
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Prompt admission upon cache miss
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Application
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Coarse-grained data movement

“Faster” storage absorbs write requests of new data
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Case of PM and NVMe SSD

“Slower” storage

“Faster” storage

Application

write
Bandwidth 

Limit

Bandwidth

Limit

Pitfall 1:  Cannot utilize combined bandwidth of heterogeneous storage

Hierarchical device layout limits cumulative bandwidth utilization!

PM

NVMe

bandwidth unutilized!
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Pitfalls in existing heterogeneous storage systems
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OS Page cache
• Bypassed for some devices by default

• No flexible admission and eviction control

• Hide latency on top of storage devices Application

Pitfall 2:  Cannot provide device-specific DRAM buffering policies

Lack mechanisms for applying device-specific policies for DRAM buffering!

Read Write



Pitfalls in existing heterogeneous storage systems
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“Slower” storage

“Faster” storage

File system
• New tiered file systems for certain devices

• Managing in block layer with one file system

• Leaving mature device-optimized FSes underutilized

Strata [SOSP’ 17], Ziggurat [FAST’ 19]

Orthus [FAST’ 21], Bcache [Linux]

NOVA [FAST’ 16], F2FS [FAST’ 15], ext4, XFS [Linux]

Pitfall 3:  Cannot capitalize on mature device-optimized file systems 

Coupling data placement decisions within the software stack!



Naïve solution with RAID 0 for heterogeneous devices?

8

Application

RAID 0

“Faster” 

storage

“Slower” 

storage

Combined bandwidth utilization

Cannot provide device-specific 

DRAM buffer cache policies!

DRAM buffering

Cannot capitalize on device-

optimized file systems!

File System

Data placement 

decisions



Ideal system for managing heterogeneous storage
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Application

“Faster” 

storage

“Slower” 

storage

Combined bandwidth utilization

Reuse mature file systems 

tailored for storage devices

Flexible DRAM buffer cache 

admission/eviction

• Data placement decisions above 

the storage software stack

Data placement decision

Hetero-aware DRAM buffering

H/W optimized 

file systems

H/W optimized 

file systems



Our solution - PolyStore
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A meta-layer on top of device-optimized kernel-level file systems

User 

space

Kernel

PolyStore runtime

PolyOS component

PM-optimized FS flash-optimized FS

Data placement 

decisions

Sharing, security, 

fairness

Indexing data across device-optimized file systems

PolyStore runtime



Indexing data across device-optimized file systems
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Distribute data across heterogeneous storage devices

[6MB, 8MB]

[8MB, 10MB][2MB, 4MB]

[4MB, 6MB][0MB, 2MB]

Per-file 

range tree

• Large files (e.g., streaming files) are 

bandwidth intensive

• Map a logical file to physical files with 

a scalable indexing structure

• Encode data placement and access 

patterns across devices

Logical file

Physical files

Key data structure for bandwidth utilization and flexible DRAM buffer cache!

Faster 
storage

Slower 
storage



Our solution - PolyStore
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A meta-layer on top of device-optimized kernel-level file systems

User 

space

Kernel

PolyStore runtime

PolyOS component

PM-optimized FS flash-optimized FS

Data placement 

decisions

Sharing, security, 

fairness

Dynamic data placement mechanism for combined bandwidth

PolyStore runtime



Attaining combined bandwidth for dynamic workloads
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• Storage bandwidths show diverse 

characteristics

• Statically identifying the optimal 

mapping cannot adapt to workload 

changes in applications

Challenge - mapping I/O from application threads to storage devices

Need dynamic data placement to maximize the storage bandwidth utilization!
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Epoch-based throughput monitoring and dynamic data placement

Application  Threads

Faster Slower
PM NVMe
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Epoch-based throughput monitoring and dynamic data placement

Application  Threads

Initial

Epoch i

Epoch i+1

Epoch i+2

Faster Slower

Converge to a local maximal configuration utilizing combined bandwidth!

PM NVMe

improve

not 

improve



Our solution - PolyStore
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A meta-layer on top of device-optimized kernel-level file systems

User 

space

Kernel

PolyStore runtime

PolyOS component

PM-optimized FS flash-optimized FS

Data placement 

decisions

Sharing, security, 

fairness

Heterogeneity-aware DRAM buffering

PolyStore runtime



DRAM buffer cache

Heterogeneity-aware DRAM buffer cache
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Logical file

Physical files

Hide access latency for heterogeneous devices

Faster 
storage

Slower 
storage



DRAM buffer cache

Heterogeneity-aware DRAM buffer cache
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Logical file

Physical files

Hide access latency for heterogeneous devices

• Asymmetrical performance in 

heterogeneous storage devices

Faster 
storage

Slower 
storage



DRAM buffer cache

Heterogeneity-aware DRAM buffer cache
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Logical file

Physical files

Hide access latency for heterogeneous devices

[6MB, 8MB]

[8MB, 10MB][2MB, 4MB]

[4MB, 6MB][0MB, 2MB]

Per-file 

range tree

• Indexing structure encodes data 

placement information

• Asymmetrical performance in 

heterogeneous storage devices
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storage
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DRAM buffer cache

Heterogeneity-aware DRAM buffer cache
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Logical file

Physical files

Hide access latency for heterogeneous devices

[6MB, 8MB]

[8MB, 10MB][2MB, 4MB]

[4MB, 6MB][0MB, 2MB]

Per-file 

range tree

• Indexing structure encodes data 

placement information

• Allocate DRAM cache buffer with 

device-specific admission & eviction 

policies

buf

buf

buf

• Asymmetrical performance in 

heterogeneous storage devices

Faster 
storage

Slower 
storage



Heterogeneity-aware DRAM buffer cache
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Logical file

Physical files

Case for using PM and NVMe

PM

PMNVMe

NVMePM

Per-file 

range tree

buf

buf
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storage
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storage



PM

Heterogeneity-aware DRAM buffer cache
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Logical file

Physical files

Case for using PM and NVMe
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range tree
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PM

Heterogeneity-aware DRAM buffer cache
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Logical file

Physical files

Case for using PM and NVMe
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Heterogeneity-aware DRAM buffer cache
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Logical file

Physical files

Case for using PM and NVMe
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range tree
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read-only data for PM
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PM

Heterogeneity-aware DRAM buffer cache
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Logical file

Physical files

Case for using PM and NVMe
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PM

Heterogeneity-aware DRAM buffer cache
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Logical file

Physical files

Case for using PM and NVMe

PM

PMNVMe

NVMePM

Per-file 

range tree

• PM read has same order of 

speed as DRAM

• Allocate DRAM buffer for PM 

only when data is modified

• Do not buffer data in DRAM for 

read-only data for PM

buf

buf

buf

WriteRead

NVMe
Faster 
storage

Slower 
storage

• PM write is slower than read



Heterogeneity-aware DRAM buffer cache
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Logical file

Physical files

Facilitating data migration decisions across devices
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Heterogeneity-aware DRAM buffer cache
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Logical file

Physical files

Facilitating data migration decisions across devices
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Heterogeneity-aware DRAM buffer cache
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Logical file

Physical files

Facilitating data migration decisions across devices
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range tree
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• Hot data on slow device selected as victim 
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Heterogeneity-aware DRAM buffer cache
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Logical file

Physical files

Facilitating data migration decisions across devices

Faster

FasterSlower

SlowerFaster

Per-file 

range tree

• Track data hotness/coldness
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Heterogeneity-aware DRAM buffer cache
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Heterogeneity-aware DRAM buffer cache
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Logical file

Physical files

Facilitating data migration decisions across devices

Faster

FasterSlower

SlowerFaster

Per-file 

range tree

• Track data hotness/coldness

• Flush hot data on slower device to faster 

one if space permits

• Hot data on slow device selected as victim 

due to memory pressure

buf

buf

• Do garbage collection for the original data 

block on slower device

Faster

Faster 
storage

Slower 
storage



Our solution - PolyStore
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A meta-layer on top of device-optimized kernel-level file systems

User 

space

Kernel

Heterogeneity-aware DRAM buffering

Scalable data block indexing structure

Dynamic data horizontal scaling and migration

PolyOS component

PM-optimized FS flash-optimized FS

More technical details in our paper!

Data placement 

decisions

Sharing, security, 

fairness



Evaluation
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• Can PolyStore improve performance for real-world applications?

• Can PolyStore utilize the combined bandwidth of storage devices?

Experiment Setup State-of-the-art systems

Orthus [FAST ’21]
NVMePM

NOVA Ext4 SPFS [FAST ’23]

Caching:

Tiering:
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Evaluation: Utilize combined devices’ bandwidth
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Multi-thread benchmark access private 2GB files (O_DIRECT flag)

Sequential append Random read

Bandwidth Limit

6.1x

3.3x

• Scalable indexes distribute data across PM and NVMe

• Dynamic data placement effectively utilize the combined bandwidth

Bandwidth Limit
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• The OS page cache cannot handle device characteristics 
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Enabling DRAM buffer cache for all approaches

• The OS page cache cannot handle device characteristics 

• PolyStore provide flexible data admission/eviction control
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Enabling DRAM buffer cache for all approaches

• The OS page cache cannot handle device characteristics 

• PolyStore provide flexible data admission/eviction control

PolyStore DRAM buffer cache

1.7x

50% read-modify-write
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PolyStore - a meta layer on top of mature device-optimized file systems

• DRAM buffering mechanism adapting to device characteristics

• Scaling device bandwidth horizontally with dynamic data placement

Thanks!

Hierarchical design philosophy no longer suits bandwidth-intensive applications

Project site

https://github.com/RutgersCSSystems/PolyStore

https://github.com/RutgersCSSystems/PolyStore
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