
PolyStore: Exploiting Combined Capabilities of

Heterogeneous Storage

Yujie Ren David Domingo Jian Zhang Paul John Rekha Pitchumani

Sanidhya Kashyap Sudarsun Kannan

Applications demand storage capacity and bandwidth

2

Photo/video

editing
Single-node

databases

RocksDB

Storage

b/w need
~ 100 MB/s ~ 1 GB/s up to 10 GB/s *

2005 2015 2025

Machine

learning

TensorFlow

PyTorch

Scientific

computing

OpenFOAM

LAMMPS

https://dl.acm.org/doi/10.1109/SC.2018.00068

Evolving storage media with specialized file systems

3

Persistent

memory
NVMe

SSD

Ultra-fast

NVMe SSD

Storage

hardware

2015 2025

Read b/w

Write b/w

13.6 GB/s

4.6 GB/s

1.2 GB/s

1.3 GB/s

6.9 GB/s

7.4 GB/s

Specialized

file systems
NOVA

F2FS

Use them collaboratively to reduce cost and retain performance!

Latency 50 μs 300 ns 10 μs

$
$$

$$
$$

Ext4

XFS

Hiding latency with hierarchical design philosophy

4

Storage devices present diverse characteristics in latency, capacity, and price

High latency device

Low latency device

Application

Caching Tiering

write

evict

read

admit

Prompt admission upon cache miss

High latency device

Low latency device

Application

write

migrate

read

migrate

Coarse-grained data movement

“Faster” storage absorbs write requests of new data

Faster

Slower

0

4

8

12

16

randread

0

2

4

6

8

randwrite
T

h
ro

u
g
h
p
u
t

(G
B

/s
) Caching

Tiering

Pitfalls in existing heterogeneous storage systems

5

Case of PM and NVMe SSD

“Slower” storage

“Faster” storage

Application

write
Bandwidth

Limit

Bandwidth

Limit

Pitfall 1: Cannot utilize combined bandwidth of heterogeneous storage

Hierarchical device layout limits cumulative bandwidth utilization!

PM

NVMe

bandwidth unutilized!

“Slower”

storage
“Faster”

storage

Pitfalls in existing heterogeneous storage systems

6

OS Page cache
• Bypassed for some devices by default

• No flexible admission and eviction control

• Hide latency on top of storage devices Application

Pitfall 2: Cannot provide device-specific DRAM buffering policies

Lack mechanisms for applying device-specific policies for DRAM buffering!

Read Write

Pitfalls in existing heterogeneous storage systems

7

“Slower” storage

“Faster” storage

File system
• New tiered file systems for certain devices

• Managing in block layer with one file system

• Leaving mature device-optimized FSes underutilized

Strata [SOSP’ 17], Ziggurat [FAST’ 19]

Orthus [FAST’ 21], Bcache [Linux]

NOVA [FAST’ 16], F2FS [FAST’ 15], ext4, XFS [Linux]

Pitfall 3: Cannot capitalize on mature device-optimized file systems

Coupling data placement decisions within the software stack!

Naïve solution with RAID 0 for heterogeneous devices?

8

Application

RAID 0

“Faster”

storage

“Slower”

storage

Combined bandwidth utilization

Cannot provide device-specific

DRAM buffer cache policies!

DRAM buffering

Cannot capitalize on device-

optimized file systems!

File System

Data placement

decisions

Ideal system for managing heterogeneous storage

9

Application

“Faster”

storage

“Slower”

storage

Combined bandwidth utilization

Reuse mature file systems

tailored for storage devices

Flexible DRAM buffer cache

admission/eviction

• Data placement decisions above

the storage software stack

Data placement decision

Hetero-aware DRAM buffering

H/W optimized

file systems

H/W optimized

file systems

Our solution - PolyStore

11

A meta-layer on top of device-optimized kernel-level file systems

User

space

Kernel

PolyStore runtime

PolyOS component

PM-optimized FS flash-optimized FS

Data placement

decisions

Sharing, security,

fairness

Indexing data across device-optimized file systems

PolyStore runtime

Indexing data across device-optimized file systems

12

Distribute data across heterogeneous storage devices

[6MB, 8MB]

[8MB, 10MB][2MB, 4MB]

[4MB, 6MB][0MB, 2MB]

Per-file

range tree

• Large files (e.g., streaming files) are

bandwidth intensive

• Map a logical file to physical files with

a scalable indexing structure

• Encode data placement and access

patterns across devices

Logical file

Physical files

Key data structure for bandwidth utilization and flexible DRAM buffer cache!

Faster
storage

Slower
storage

Our solution - PolyStore

13

A meta-layer on top of device-optimized kernel-level file systems

User

space

Kernel

PolyStore runtime

PolyOS component

PM-optimized FS flash-optimized FS

Data placement

decisions

Sharing, security,

fairness

Dynamic data placement mechanism for combined bandwidth

PolyStore runtime

Attaining combined bandwidth for dynamic workloads

14

• Storage bandwidths show diverse

characteristics

• Statically identifying the optimal

mapping cannot adapt to workload

changes in applications

Challenge - mapping I/O from application threads to storage devices

Need dynamic data placement to maximize the storage bandwidth utilization!

0

1

2

3

4

5

1 6 11 16 21 26 31

B
a
n
d

w
id

th
 (

G
B

/s
)

threads

 PM

 NVMe

0

1

2

3

4

5

1 6 11 16 21 26 31

B
a
n
d

w
id

th
 (

G
B

/s
)

threads

 PM

 NVMe

Attaining combined bandwidth for dynamic workloads

15

Epoch-based throughput monitoring and dynamic data placement

Application Threads

Faster Slower
PM NVMe

0

1

2

3

4

5

1 6 11 16 21 26 31

B
a
n
d

w
id

th
 (

G
B

/s
)

threads

 PM

 NVMe

Attaining combined bandwidth for dynamic workloads

15

Epoch-based throughput monitoring and dynamic data placement

Application Threads

Initial

Faster Slower
PM NVMe

0

1

2

3

4

5

1 6 11 16 21 26 31

B
a
n
d

w
id

th
 (

G
B

/s
)

threads

 PM

 NVMe

Attaining combined bandwidth for dynamic workloads

15

Epoch-based throughput monitoring and dynamic data placement

Application Threads

Initial

Epoch i

Faster Slower
PM NVMe

0

1

2

3

4

5

1 6 11 16 21 26 31

B
a
n
d

w
id

th
 (

G
B

/s
)

threads

 PM

 NVMe

Attaining combined bandwidth for dynamic workloads

15

Epoch-based throughput monitoring and dynamic data placement

Application Threads

Initial

Epoch i

Faster Slower
PM NVMe

improve

0

1

2

3

4

5

1 6 11 16 21 26 31

B
a
n
d

w
id

th
 (

G
B

/s
)

threads

 PM

 NVMe

Attaining combined bandwidth for dynamic workloads

15

Epoch-based throughput monitoring and dynamic data placement

Application Threads

Initial

Epoch i

Epoch i+1

Faster Slower
PM NVMe

improve

0

1

2

3

4

5

1 6 11 16 21 26 31

B
a
n
d

w
id

th
 (

G
B

/s
)

threads

 PM

 NVMe

Attaining combined bandwidth for dynamic workloads

15

Epoch-based throughput monitoring and dynamic data placement

Application Threads

Initial

Epoch i

Epoch i+1

Faster Slower
PM NVMe

improve

not

improve

0

1

2

3

4

5

1 6 11 16 21 26 31

B
a
n
d

w
id

th
 (

G
B

/s
)

threads

 PM

 NVMe

Attaining combined bandwidth for dynamic workloads

15

Epoch-based throughput monitoring and dynamic data placement

Application Threads

Initial

Epoch i

Epoch i+1

Epoch i+2

Faster Slower
PM NVMe

improve

not

improve

0

1

2

3

4

5

1 6 11 16 21 26 31

B
a
n
d

w
id

th
 (

G
B

/s
)

threads

 PM

 NVMe

Attaining combined bandwidth for dynamic workloads

15

Epoch-based throughput monitoring and dynamic data placement

Application Threads

Initial

Epoch i

Epoch i+1

Epoch i+2

Faster Slower

Converge to a local maximal configuration utilizing combined bandwidth!

PM NVMe

improve

not

improve

Our solution - PolyStore

16

A meta-layer on top of device-optimized kernel-level file systems

User

space

Kernel

PolyStore runtime

PolyOS component

PM-optimized FS flash-optimized FS

Data placement

decisions

Sharing, security,

fairness

Heterogeneity-aware DRAM buffering

PolyStore runtime

DRAM buffer cache

Heterogeneity-aware DRAM buffer cache

17

Logical file

Physical files

Hide access latency for heterogeneous devices

Faster
storage

Slower
storage

DRAM buffer cache

Heterogeneity-aware DRAM buffer cache

17

Logical file

Physical files

Hide access latency for heterogeneous devices

• Asymmetrical performance in

heterogeneous storage devices

Faster
storage

Slower
storage

DRAM buffer cache

Heterogeneity-aware DRAM buffer cache

17

Logical file

Physical files

Hide access latency for heterogeneous devices

[6MB, 8MB]

[8MB, 10MB][2MB, 4MB]

[4MB, 6MB][0MB, 2MB]

Per-file

range tree

• Indexing structure encodes data

placement information

• Asymmetrical performance in

heterogeneous storage devices

Faster
storage

Slower
storage

DRAM buffer cache

Heterogeneity-aware DRAM buffer cache

17

Logical file

Physical files

Hide access latency for heterogeneous devices

[6MB, 8MB]

[8MB, 10MB][2MB, 4MB]

[4MB, 6MB][0MB, 2MB]

Per-file

range tree

• Indexing structure encodes data

placement information

• Allocate DRAM cache buffer with

device-specific admission & eviction

policies

buf

buf

buf

• Asymmetrical performance in

heterogeneous storage devices

Faster
storage

Slower
storage

Heterogeneity-aware DRAM buffer cache

18

Logical file

Physical files

Case for using PM and NVMe

PM

PMNVMe

NVMePM

Per-file

range tree

buf

buf

Faster
storage

Slower
storage

PM

Heterogeneity-aware DRAM buffer cache

18

Logical file

Physical files

Case for using PM and NVMe

PM

PMNVMe

NVMePM

Per-file

range tree

buf

buf

NVMe
Faster
storage

Slower
storage

PM

Heterogeneity-aware DRAM buffer cache

18

Logical file

Physical files

Case for using PM and NVMe

PM

PMNVMe

NVMePM

Per-file

range tree

• PM read has same order of

speed as DRAM

buf

buf

NVMe
Faster
storage

Slower
storage

PM

Heterogeneity-aware DRAM buffer cache

18

Logical file

Physical files

Case for using PM and NVMe

PM

PMNVMe

NVMePM

Per-file

range tree

• PM read has same order of

speed as DRAM

• Do not buffer data in DRAM for

read-only data for PM
buf

buf

Read

NVMe
Faster
storage

Slower
storage

PM

Heterogeneity-aware DRAM buffer cache

18

Logical file

Physical files

Case for using PM and NVMe

PM

PMNVMe

NVMePM

Per-file

range tree

• PM read has same order of

speed as DRAM

• Do not buffer data in DRAM for

read-only data for PM
buf

buf

WriteRead

NVMe
Faster
storage

Slower
storage

• PM write is slower than read

PM

Heterogeneity-aware DRAM buffer cache

18

Logical file

Physical files

Case for using PM and NVMe

PM

PMNVMe

NVMePM

Per-file

range tree

• PM read has same order of

speed as DRAM

• Allocate DRAM buffer for PM

only when data is modified

• Do not buffer data in DRAM for

read-only data for PM

buf

buf

buf

WriteRead

NVMe
Faster
storage

Slower
storage

• PM write is slower than read

Heterogeneity-aware DRAM buffer cache

19

Logical file

Physical files

Facilitating data migration decisions across devices

Faster

FasterSlower

SlowerFaster

Per-file

range tree
buf

buf

buf

Faster
storage

Slower
storage

Heterogeneity-aware DRAM buffer cache

19

Logical file

Physical files

Facilitating data migration decisions across devices

Faster

FasterSlower

SlowerFaster

Per-file

range tree

• Track data hotness/coldness

buf

buf

buf

Faster
storage

Slower
storage

Heterogeneity-aware DRAM buffer cache

19

Logical file

Physical files

Facilitating data migration decisions across devices

Faster

FasterSlower

SlowerFaster

Per-file

range tree

• Track data hotness/coldness

• Hot data on slow device selected as victim

due to memory pressure

buf

buf

buf

Faster
storage

Slower
storage

Heterogeneity-aware DRAM buffer cache

19

Logical file

Physical files

Facilitating data migration decisions across devices

Faster

FasterSlower

SlowerFaster

Per-file

range tree

• Track data hotness/coldness

• Flush hot data on slower device to faster

one if space permits

• Hot data on slow device selected as victim

due to memory pressure

buf

buf

buf

Evict

Faster
storage

Slower
storage

Heterogeneity-aware DRAM buffer cache

19

Logical file

Physical files

Facilitating data migration decisions across devices

Faster

FasterSlower

SlowerFaster

Per-file

range tree

• Track data hotness/coldness

• Flush hot data on slower device to faster

one if space permits

• Hot data on slow device selected as victim

due to memory pressure

buf

buf

Faster

Faster
storage

Slower
storage

Heterogeneity-aware DRAM buffer cache

19

Logical file

Physical files

Facilitating data migration decisions across devices

Faster

FasterSlower

SlowerFaster

Per-file

range tree

• Track data hotness/coldness

• Flush hot data on slower device to faster

one if space permits

• Hot data on slow device selected as victim

due to memory pressure

buf

buf

• Do garbage collection for the original data

block on slower device

Faster

Faster
storage

Slower
storage

Our solution - PolyStore

20

A meta-layer on top of device-optimized kernel-level file systems

User

space

Kernel

Heterogeneity-aware DRAM buffering

Scalable data block indexing structure

Dynamic data horizontal scaling and migration

PolyOS component

PM-optimized FS flash-optimized FS

More technical details in our paper!

Data placement

decisions

Sharing, security,

fairness

Evaluation

21

• Can PolyStore improve performance for real-world applications?

• Can PolyStore utilize the combined bandwidth of storage devices?

Experiment Setup State-of-the-art systems

Orthus [FAST ’21]
NVMePM

NOVA Ext4 SPFS [FAST ’23]

Caching:

Tiering:

0

3

6

9

12

15

18

1 4 8 16 32

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

of threads

 Caching

 Tiering

 PolyStore

0

1

2

3

4

5

6

1 4 8 16 32

T
h
ro

u
g
h
p
u
t
(G

B
/s

)

of threads

 Caching

 Tiering

 PolyStore

Evaluation: Utilize combined devices’ bandwidth

22

Multi-thread benchmark access private 2GB files (O_DIRECT flag)

Sequential append Random read

Bandwidth Limit

6.1x

3.3x

• Scalable indexes distribute data across PM and NVMe

• Dynamic data placement effectively utilize the combined bandwidth

Bandwidth Limit

0

1

2

3

4

5

6

1 4 8 16 32

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

of threads

 Caching

 Tiering

 PolyStore

Evaluation: Utilize combined devices’ bandwidth

23

32 benchmark threads access private 2GB files (O_DIRECT flag)

Static coarse-grained data placement

Sequential append

Bandwidth Limit

0

1

2

3

4

5

6

1 4 8 16 32

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

of threads

 Caching

 Tiering

 PolyStore

Evaluation: Utilize combined devices’ bandwidth

23

32 benchmark threads access private 2GB files (O_DIRECT flag)

Benchmark Threads

PM NVMeStatic coarse-grained data placement

Sequential append

Bandwidth Limit

0

1

2

3

4

5

6

1 4 8 16 32

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

of threads

 Caching

 Tiering

 PolyStore

Evaluation: Utilize combined devices’ bandwidth

23

32 benchmark threads access private 2GB files (O_DIRECT flag)

Benchmark Threads

PM NVMe

Initial

Static coarse-grained data placement

Sequential append

Bandwidth Limit

0

1

2

3

4

5

6

1 4 8 16 32

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

of threads

 Caching

 Tiering

 PolyStore

Evaluation: Utilize combined devices’ bandwidth

23

32 benchmark threads access private 2GB files (O_DIRECT flag)

Benchmark Threads

PM NVMe

Initial

Finish

Static coarse-grained data placement

Sequential append

Bandwidth Limit

0

1

2

3

4

5

6

1 4 8 16 32

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

of threads

 Caching

 Tiering

 PolyStore

Evaluation: Utilize combined devices’ bandwidth

23

32 benchmark threads access private 2GB files (O_DIRECT flag)

Benchmark Threads

PM NVMe

Initial

Finish

Static coarse-grained data placement

Sequential append

Bandwidth Limit

0

1

2

3

4

5

6

1 4 8 16 32

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

of threads

 Caching

 Tiering

 PolyStore

Evaluation: Utilize combined devices’ bandwidth

23

32 benchmark threads access private 2GB files (O_DIRECT flag)

Benchmark Threads

PM NVMe

Initial

Finish

Static coarse-grained data placement

Sequential append

Bandwidth Limit

0

1

2

3

4

5

6

1 4 8 16 32

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

of threads

 Caching

 Tiering

 PolyStore

Evaluation: Utilize combined devices’ bandwidth

23

32 benchmark threads access private 2GB files (O_DIRECT flag)

Benchmark Threads

PM NVMe

Initial

Finish

PM

bandwidth

unutilized!

Static coarse-grained data placement

Sequential append

Bandwidth Limit

0

1

2

3

4

5

6

1 4 8 16 32

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

of threads

 Caching

 Tiering

 PolyStore

Evaluation: Utilize combined devices’ bandwidth

23

32 benchmark threads access private 2GB files (O_DIRECT flag)

Benchmark Threads

PM NVMe

Initial

Finish

PM

bandwidth

unutilized!

Static coarse-grained data placement

Sequential append

Bandwidth Limit

0

1

2

3

4

5

6

1 4 8 16 32

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

of threads

 Caching

 Tiering

 PolyStore

Evaluation: Utilize combined devices’ bandwidth

24

32 benchmark threads access private 2GB files (O_DIRECT flag)

Sequential append

Bandwidth Limit

0

1

2

3

4

5

6

1 4 8 16 32

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

of threads

 Caching

 Tiering

 PolyStore

Evaluation: Utilize combined devices’ bandwidth

24

32 benchmark threads access private 2GB files (O_DIRECT flag)

Sequential append

Bandwidth Limit

PolyStore data indexes + dynamic data placement

0

1

2

3

4

5

6

1 4 8 16 32

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

of threads

 Caching

 Tiering

 PolyStore

Evaluation: Utilize combined devices’ bandwidth

24

32 benchmark threads access private 2GB files (O_DIRECT flag)

Sequential append

Bandwidth Limit

Benchmark Threads

PM NVMePolyStore data indexes + dynamic data placement

0

1

2

3

4

5

6

1 4 8 16 32

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

of threads

 Caching

 Tiering

 PolyStore

Evaluation: Utilize combined devices’ bandwidth

24

32 benchmark threads access private 2GB files (O_DIRECT flag)

Sequential append

Bandwidth Limit

Benchmark Threads

PM NVMe

Initial

PolyStore data indexes + dynamic data placement

0

1

2

3

4

5

6

1 4 8 16 32

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

of threads

 Caching

 Tiering

 PolyStore

Evaluation: Utilize combined devices’ bandwidth

24

32 benchmark threads access private 2GB files (O_DIRECT flag)

Sequential append

Bandwidth Limit

Benchmark Threads

PM NVMe

Initial

Finish

PolyStore data indexes + dynamic data placement

0

1

2

3

4

5

6

1 4 8 16 32

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

of threads

 Caching

 Tiering

 PolyStore

Evaluation: Utilize combined devices’ bandwidth

24

32 benchmark threads access private 2GB files (O_DIRECT flag)

Sequential append

Bandwidth Limit

Benchmark Threads

PM NVMe

Initial

Finish

PolyStore data indexes + dynamic data placement

0

1

2

3

4

5

6

1 4 8 16 32

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

of threads

 Caching

 Tiering

 PolyStore

Evaluation: Utilize combined devices’ bandwidth

24

32 benchmark threads access private 2GB files (O_DIRECT flag)

Sequential append

Bandwidth Limit

Benchmark Threads

PM NVMe

Initial

Finish

PolyStore data indexes + dynamic data placement

0

1

2

3

4

5

6

1 4 8 16 32

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

of threads

 Caching

 Tiering

 PolyStore

Evaluation: Utilize combined devices’ bandwidth

24

32 benchmark threads access private 2GB files (O_DIRECT flag)

Sequential append

Bandwidth Limit

Benchmark Threads

PM NVMe

Initial

Finish

Maximize

cumulative

bandwidth!

PolyStore data indexes + dynamic data placement

0

100

200

300

400

500

600

YCSB - A YCSB - B YCSB - C YCSB - D YCSB - E YCSB - F

T
h
ro

u
g
h
p
u
t

(k
o
p
s
/s

)

YCSB Workload

 Caching

 Tiering

 PolyStore

Real applications: RocksDB with YCSB workload

25

Enabling DRAM buffer cache for all approaches

0

100

200

300

400

500

600

YCSB - A YCSB - B YCSB - C YCSB - D YCSB - E YCSB - F

T
h
ro

u
g
h
p
u
t

(k
o
p
s
/s

)

YCSB Workload

 Caching

 Tiering

 PolyStore

Real applications: RocksDB with YCSB workload

25

Enabling DRAM buffer cache for all approaches

• The OS page cache cannot handle device characteristics

0

100

200

300

400

500

600

YCSB - A YCSB - B YCSB - C YCSB - D YCSB - E YCSB - F

T
h
ro

u
g
h
p
u
t

(k
o
p
s
/s

)

YCSB Workload

 Caching

 Tiering

 PolyStore

Real applications: RocksDB with YCSB workload

25

Enabling DRAM buffer cache for all approaches

• The OS page cache cannot handle device characteristics

50% read-modify-write

0

100

200

300

400

500

600

YCSB - A YCSB - B YCSB - C YCSB - D YCSB - E YCSB - F

T
h
ro

u
g
h
p
u
t

(k
o
p
s
/s

)

YCSB Workload

 Caching

 Tiering

 PolyStore

Real applications: RocksDB with YCSB workload

25

Enabling DRAM buffer cache for all approaches

• The OS page cache cannot handle device characteristics
Using OS page cache

50% read-modify-write

0

100

200

300

400

500

600

YCSB - A YCSB - B YCSB - C YCSB - D YCSB - E YCSB - F

T
h
ro

u
g
h
p
u
t

(k
o
p
s
/s

)

YCSB Workload

 Caching

 Tiering

 PolyStore

Real applications: RocksDB with YCSB workload

25

Enabling DRAM buffer cache for all approaches

• The OS page cache cannot handle device characteristics PolyStore DRAM buffer cache

50% read-modify-write

0

100

200

300

400

500

600

YCSB - A YCSB - B YCSB - C YCSB - D YCSB - E YCSB - F

T
h
ro

u
g
h
p
u
t

(k
o
p
s
/s

)

YCSB Workload

 Caching

 Tiering

 PolyStore

Real applications: RocksDB with YCSB workload

25

Enabling DRAM buffer cache for all approaches

• The OS page cache cannot handle device characteristics

• PolyStore provide flexible data admission/eviction control

PolyStore DRAM buffer cache

50% read-modify-write

0

100

200

300

400

500

600

YCSB - A YCSB - B YCSB - C YCSB - D YCSB - E YCSB - F

T
h
ro

u
g
h
p
u
t

(k
o
p
s
/s

)

YCSB Workload

 Caching

 Tiering

 PolyStore

Real applications: RocksDB with YCSB workload

25

Enabling DRAM buffer cache for all approaches

• The OS page cache cannot handle device characteristics

• PolyStore provide flexible data admission/eviction control

PolyStore DRAM buffer cache

1.7x

50% read-modify-write

Conclusion

26

PolyStore - a meta layer on top of mature device-optimized file systems

• DRAM buffering mechanism adapting to device characteristics

• Scaling device bandwidth horizontally with dynamic data placement

Thanks!

Hierarchical design philosophy no longer suits bandwidth-intensive applications

Project site

https://github.com/RutgersCSSystems/PolyStore

https://github.com/RutgersCSSystems/PolyStore

	Slide 1: PolyStore: Exploiting Combined Capabilities of Heterogeneous Storage
	Slide 2: Applications demand storage capacity and bandwidth
	Slide 3: Evolving storage media with specialized file systems
	Slide 4: Hiding latency with hierarchical design philosophy
	Slide 5: Pitfalls in existing heterogeneous storage systems
	Slide 6: Pitfalls in existing heterogeneous storage systems
	Slide 7: Pitfalls in existing heterogeneous storage systems
	Slide 8: Naïve solution with RAID 0 for heterogeneous devices?
	Slide 9: Ideal system for managing heterogeneous storage
	Slide 10: Our solution - PolyStore
	Slide 11: Indexing data across device-optimized file systems
	Slide 12: Our solution - PolyStore
	Slide 13: Attaining combined bandwidth for dynamic workloads
	Slide 14: Attaining combined bandwidth for dynamic workloads
	Slide 15: Attaining combined bandwidth for dynamic workloads
	Slide 16: Attaining combined bandwidth for dynamic workloads
	Slide 17: Attaining combined bandwidth for dynamic workloads
	Slide 18: Attaining combined bandwidth for dynamic workloads
	Slide 19: Attaining combined bandwidth for dynamic workloads
	Slide 20: Attaining combined bandwidth for dynamic workloads
	Slide 21: Attaining combined bandwidth for dynamic workloads
	Slide 22: Our solution - PolyStore
	Slide 23: Heterogeneity-aware DRAM buffer cache
	Slide 24: Heterogeneity-aware DRAM buffer cache
	Slide 25: Heterogeneity-aware DRAM buffer cache
	Slide 26: Heterogeneity-aware DRAM buffer cache
	Slide 27: Heterogeneity-aware DRAM buffer cache
	Slide 28: Heterogeneity-aware DRAM buffer cache
	Slide 29: Heterogeneity-aware DRAM buffer cache
	Slide 30: Heterogeneity-aware DRAM buffer cache
	Slide 31: Heterogeneity-aware DRAM buffer cache
	Slide 32: Heterogeneity-aware DRAM buffer cache
	Slide 33: Heterogeneity-aware DRAM buffer cache
	Slide 34: Heterogeneity-aware DRAM buffer cache
	Slide 35: Heterogeneity-aware DRAM buffer cache
	Slide 36: Heterogeneity-aware DRAM buffer cache
	Slide 37: Heterogeneity-aware DRAM buffer cache
	Slide 38: Heterogeneity-aware DRAM buffer cache
	Slide 39: Our solution - PolyStore
	Slide 40: Evaluation
	Slide 41: Evaluation: Utilize combined devices’ bandwidth
	Slide 42: Evaluation: Utilize combined devices’ bandwidth
	Slide 43: Evaluation: Utilize combined devices’ bandwidth
	Slide 44: Evaluation: Utilize combined devices’ bandwidth
	Slide 45: Evaluation: Utilize combined devices’ bandwidth
	Slide 46: Evaluation: Utilize combined devices’ bandwidth
	Slide 47: Evaluation: Utilize combined devices’ bandwidth
	Slide 48: Evaluation: Utilize combined devices’ bandwidth
	Slide 49: Evaluation: Utilize combined devices’ bandwidth
	Slide 50: Evaluation: Utilize combined devices’ bandwidth
	Slide 51: Evaluation: Utilize combined devices’ bandwidth
	Slide 52: Evaluation: Utilize combined devices’ bandwidth
	Slide 53: Evaluation: Utilize combined devices’ bandwidth
	Slide 54: Evaluation: Utilize combined devices’ bandwidth
	Slide 55: Evaluation: Utilize combined devices’ bandwidth
	Slide 56: Evaluation: Utilize combined devices’ bandwidth
	Slide 57: Evaluation: Utilize combined devices’ bandwidth
	Slide 58: Real applications: RocksDB with YCSB workload
	Slide 59: Real applications: RocksDB with YCSB workload
	Slide 60: Real applications: RocksDB with YCSB workload
	Slide 61: Real applications: RocksDB with YCSB workload
	Slide 62: Real applications: RocksDB with YCSB workload
	Slide 63: Real applications: RocksDB with YCSB workload
	Slide 64: Real applications: RocksDB with YCSB workload
	Slide 65: Conclusion

